Diversity Knowledge Distillation for LiDAR-Based 3-D Object Detection

被引:2
作者
Ning, Kanglin [1 ]
Liu, Yanfei [1 ]
Su, Yanzhao [1 ]
Jiang, Ke [1 ]
机构
[1] High Tech Inst Xian, Dept Basic Courses, Xian 710025, Peoples R China
关键词
Detectors; Three-dimensional displays; Point cloud compression; Feature extraction; Laser radar; Object detection; Sensors; 3-D displays; detectors; knowledge distillation; laser radar; object detection;
D O I
10.1109/JSEN.2023.3241624
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The light detection and ranging (LiDAR) sensor enables high-quality 3-D object detection, which is critical in autonomous driving applications. However, accurate detectors require more computing resources owing to the discreteness and disorder of point cloud data. To resolve this problem, we propose diversity knowledge distillation or 3-D object detection, which distills the knowledge from a two-stage high-accuracy detector to a faster one-stage detector. This framework includes methods to match the bounding box predictions of the one-stage student and two-stage teacher detectors with inconsistent numbers. Accordingly, we design a response-based distillation method to perform distillation. Then, a diversity feature score is proposed to guide the student in selecting the parts that need more attention on the middle-layer feature map and the region of interest (RoI) output by the distillation process. Experiments demonstrate that the proposed method can enhance the performance of a one-stage detector without increasing the computation of the mode in the test stage.
引用
收藏
页码:11181 / 11193
页数:13
相关论文
共 50 条
  • [21] BEV-LGKD: A Unified LiDAR-Guided Knowledge Distillation Framework for Multi-View BEV 3D Object Detection
    Li, Jianing
    Lu, Ming
    Liu, Jiaming
    Guo, Yandong
    Du, Yuan
    Du, Li
    Zhang, Shanghang
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 2489 - 2498
  • [22] LiDAR-Based Multisensor Fusion With 3-D Digital Maps for High-Precision Positioning
    Mounier, Eslam
    Elhabiby, Mohamed
    Korenberg, Michael
    Noureldin, Aboelmagd
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (06): : 7209 - 7224
  • [23] Super Sparse 3D Object Detection
    Fan, Lue
    Yang, Yuxue
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12490 - 12505
  • [24] 3D Object Detection With Multi-Frame RGB-Lidar Feature Alignment
    Ercelik, Emec
    Yurtsever, Ekim
    Knoll, Alois
    IEEE ACCESS, 2021, 9 : 143138 - 143149
  • [25] ODD-M3D: Object-Wise Dense Depth Estimation for Monocular 3-D Object Detection
    Park, Chanyeong
    Kim, Heegwang
    Jang, Junbo
    Paik, Joonki
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 646 - 655
  • [26] 3-D Object Detection With Balanced Prediction Based on Contrastive Point Loss
    Tong, Jiaxun
    Liu, Kaiqi
    Bai, Xia
    Li, Wei
    IEEE SENSORS JOURNAL, 2024, 24 (04) : 4969 - 4977
  • [27] Significance of Image Features in Camera-LiDAR Based Object Detection
    Csontho, Mihaly
    Rovid, Andras
    Szalay, Zsolt
    IEEE ACCESS, 2022, 10 : 61034 - 61045
  • [28] Exploring Diversity-Based Active Learning for 3D Object Detection in Autonomous Driving
    Lin, Jinpeng
    Liang, Zhihao
    Deng, Shengheng
    Cai, Lile
    Jiang, Tao
    Li, Tianrui
    Jia, Kui
    Xu, Xun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 15454 - 15466
  • [29] D-S Augmentation: Density-Semantics Augmentation for 3-D Object Detection
    Liu, Zhiqiang
    Shi, Peicheng
    Qi, Heng
    Yang, Aixi
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2760 - 2772
  • [30] Multi-Modal Fusion Based on Depth Adaptive Mechanism for 3D Object Detection
    Liu, Zhanwen
    Cheng, Juanru
    Fan, Jin
    Lin, Shan
    Wang, Yang
    Zhao, Xiangmo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 707 - 717