IMPLICIT DETERMINANT METHOD FOR SOLVING AN HERMITIAN EIGENVALUE OPTIMIZATION PROBLEM

被引:0
作者
Gong, Siru [1 ]
Su, Yangfeng [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 06期
关键词
Eigenvalue optimization; Multiple eigenvalue; Non-smooth optimization; Implicit determinant method; Crawford number; MATRIX; ALGORITHM; DISTANCE; PAIR;
D O I
10.4208/jcm.2203-m2020-0303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Implicit determinant method is an effective method for some linear eigenvalue optimization problems since it solves linear systems of equations rather than eigenpairs. In this paper, we generalize the implicit determinant method to solve an Hermitian eigenvalue optimization problem for smooth case and non-smooth case. We prove that the implicit determinant method converges locally and quadratically. Numerical experiments confirm our theoretical results and illustrate the efficiency of implicit determinant method.
引用
收藏
页码:1117 / 1136
页数:20
相关论文
共 25 条
  • [11] AN IMPROVED ARC ALGORITHM FOR DETECTING DEFINITE HERMITIAN PAIRS
    Guo, Chun-Hua
    Higham, Nicholas J.
    Tisseur, Francoise
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) : 1131 - 1151
  • [12] A spectral bundle method for semidefinite programming
    Helmberg, C
    Rendl, F
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) : 673 - 696
  • [13] More on pseudospectra for polynomial eigenvalue problems and applications in control theory
    Higham, NJ
    Tisseur, F
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 351 : 435 - 453
  • [14] Hinrichsen D., 2005, MATH SYSTEMTHEORY
  • [15] Kangal F, 2020, IMA J NUMER ANAL, V40, P2342, DOI 10.1093/imanum/drz041
  • [16] A SUBSPACE METHOD FOR LARGE-SCALE EIGENVALUE OPTIMIZATION
    Kangal, Fatih
    Meerbergen, Karl
    Mengi, Emre
    Michiels, Wim
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (01) : 48 - 82
  • [17] Kato T., 1995, Perturbation Theory for Linear Operators, DOI 10.1007/978-3-642-66282-9
  • [18] SUBSPACE ACCELERATION FOR THE CRAWFORD NUMBER AND RELATED EIGENVALUE OPTIMIZATION PROBLEMS
    Kressner, Daniel
    Lu, Ding
    Vandereycken, Bart
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (02) : 961 - 982
  • [19] Lancaster P, 1964, NUMER MATH, V6, P377, DOI DOI 10.1007/BF01386087
  • [20] Lewis A. S., 1996, Acta Numerica, V5, P149, DOI 10.1017/S0962492900002646