StruNet: Perceptual and low-rank regularized transformer for medical image denoising

被引:8
|
作者
Ma, Yuhui [1 ,2 ]
Yan, Qifeng [1 ]
Liu, Yonghuai [3 ]
Liu, Jiang [4 ]
Zhang, Jiong [1 ]
Zhao, Yitian [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Cixi Inst Biomed Engn, Cixi 315399, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Edge Hill Univ, Dept Comp Sci, Ormskirk, England
[4] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
关键词
low-rank regularization; medical image denoising; perceptual loss; Swin transformer; COHERENCE TOMOGRAPHY IMAGES; LOW-DOSE CT; NOISE-REDUCTION; SPECKLE; RECONSTRUCTION; SUPPRESSION; MODEL;
D O I
10.1002/mp.16550
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundVarious types of noise artifacts inevitably exist in some medical imaging modalities due to limitations of imaging techniques, which impair either clinical diagnosis or subsequent analysis. Recently, deep learning approaches have been rapidly developed and applied on medical images for noise removal or image quality enhancement. Nevertheless, due to complexity and diversity of noise distribution representations in different medical imaging modalities, most of the existing deep learning frameworks are incapable to flexibly remove noise artifacts while retaining detailed information. As a result, it remains challenging to design an effective and unified medical image denoising method that will work across a variety of noise artifacts for different imaging modalities without requiring specialized knowledge in performing the task. PurposeIn this paper, we propose a novel encoder-decoder architecture called Swin transformer-based residual u-shape Network (StruNet), for medical image denoising. MethodsOur StruNet adopts a well-designed block as the backbone of the encoder-decoder architecture, which integrates Swin Transformer modules with residual block in parallel connection. Swin Transformer modules could effectively learn hierarchical representations of noise artifacts via self-attention mechanism in non-overlapping shifted windows and cross-window connection, while residual block is advantageous to compensate loss of detailed information via shortcut connection. Furthermore, perceptual loss and low-rank regularization are incorporated into loss function respectively in order to constrain the denoising results on feature-level consistency and low-rank characteristics. ResultsTo evaluate the performance of the proposed method, we have conducted experiments on three medical imaging modalities including computed tomography (CT), optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). ConclusionsThe results demonstrate that the proposed architecture yields a promising performance of suppressing multiform noise artifacts existing in different imaging modalities.
引用
收藏
页码:7654 / 7669
页数:16
相关论文
共 50 条
  • [1] LOW-RANK REGULARIZED JOINT SPARSITY FOR IMAGE DENOISING
    Zha, Zhiyuan
    Wen, Bihan
    Yuan, Xin
    Zhou, Jiantao
    Zhu, Ce
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1644 - 1648
  • [2] LOW-RANK REGULARIZED COLLABORATIVE FILTERING FOR IMAGE DENOISING
    Nejati, Mansour
    Samavi, Shadrokh
    Soroushmehr, S. M. Reza
    Najarian, Kayvan
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 730 - 734
  • [3] Nonlocal Low-Rank Regularized Tensor Decomposition for Hyperspectral Image Denoising
    Xue, Jize
    Zhao, Yongqiang
    Liao, Wenzhi
    Chan, Jonathan Cheung-Wai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 5174 - 5189
  • [4] Low-Rank Prompt-Guided Transformer for Hyperspectral Image Denoising
    Tan, Xiaodong
    Shao, Mingwen
    Qiao, Yuanjian
    Liu, Tiyao
    Cao, Xiangyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] Total variation regularized low-rank tensor approximation for color image denoising
    Chen, Yongyong
    Zhou, Yicong
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 2523 - 2527
  • [6] Adaptive Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising and Destriping
    Li, Dongyi
    Chu, Dong
    Guan, Xiaobin
    He, Wei
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [7] Dual graph-regularized low-rank representation for hyperspectral image denoising
    Leng, Chengcai
    Tang, Mingpei
    Pei, Zhao
    Peng, Jinye
    Basu, Anup
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [8] TriAxial Low-Rank Transformer for Efficient Medical Image Segmentation
    Shang, Jiang
    Fang, Xi
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT II, 2024, 14426 : 91 - 102
  • [9] Low-Rank and Spectral-Spatial Variation Regularized Hyperspectral Image Denoising Algorithm
    Liu, Yanhui
    Wang, Weiguo
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [10] Multimode Structural Nonconvex Tensor Low-Rank Regularized Hyperspectral Image Destriping and Denoising
    Liu, Pengfei
    Long, Haijian
    Ni, Kang
    Zheng, Zhizhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5