A Cosine-Similarity-Based Deconvolution Method for Analyzing Data-Independent Acquisition Mass Spectrometry Data

被引:1
作者
Zhang, Xiang [1 ]
Wu, Ruitao [1 ]
Qu, Zhijian [1 ]
机构
[1] Shandong Univ Technol, Sch Comp Sci & Technol, Zibo 255049, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 10期
关键词
data-independent acquisition; MS/MS spectra; peptide identification; method; XICs; isotopic peak cluster; TARGETED ANALYSIS;
D O I
10.3390/app13105969
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although data-independent acquisition (DIA) has the ability to identify and quantify all peptides in a sample, highly complex mixed mass spectra present difficulties for accurate peptide and protein identification. Additionally, the correspondence between the precursor and its fragments is broken, making it challenging to perform peptide identification directly using conventional DDA search engines. In this paper, we propose a cosine-similarity-based deconvolution method: CorrDIA. This is achieved by reconstructing the correspondence between precursor and fragment ions based on the consistency of extracted ion chromatograms (XICs). A deisotope peak cluster operation is added and centered on the MS/MS spectrum to improve the accuracy of spectrum interpretation and increase the number of identified peptides. The resulting MS/MS spectra can be identified using any data-dependent acquisition (DDA) sequencing software. The experimental results demonstrate that the number of peptide results increased by 12 percent and 21 percent respectively, and the repetition rate decreased by 12 percent. This reduces mass spectra complexity and difficulties in mass spectra analysis without the need for any mass spectra libraries.
引用
收藏
页数:12
相关论文
共 23 条
  • [1] Mass-spectrometric exploration of proteome structure and function
    Aebersold, Ruedi
    Mann, Matthias
    [J]. NATURE, 2016, 537 (7620) : 347 - 355
  • [2] Bantscheff M, 2012, ANAL BIOANAL CHEM, V404, P939, DOI 10.1007/s00216-012-6203-4
  • [3] Deconvolution of Mixture Spectra from Ion-Trap Data-Independent-Acquisition Tandem Mass Spectrometry
    Bern, Marshall
    Finney, Gregory
    Hoopmann, Michael R.
    Merrihew, Gennifer
    Toth, Michael J.
    MacCoss, Michael J.
    [J]. ANALYTICAL CHEMISTRY, 2010, 82 (03) : 833 - 841
  • [4] Processing strategies and software solutions for data-independent acquisition in mass spectrometry
    Bilbao, Aivett
    Varesio, Emmanuel
    Luban, Jeremy
    Strambio-De-Castillia, Caterina
    Hopfgartner, Gerard
    Mueller, Markus
    Lisacek, Frederique
    [J]. PROTEOMICS, 2015, 15 (5-6) : 964 - 980
  • [5] Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine
    Chi, Hao
    Liu, Chao
    Yang, Hao
    Zeng, Wen-Feng
    Wu, Long
    Zhou, Wen-Jing
    Wang, Rui-Min
    Niu, Xiu-Nan
    Ding, Yue-He
    Zhang, Yao
    Wang, Zhao-Wei
    Chen, Zhen-Lin
    Sun, Rui-Xiang
    Liu, Tao
    Tan, Guang-Ming
    Dong, Meng-Qiu
    Xu, Ping
    Zhang, Pei-Heng
    He, Si-Min
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (11) : 1059 - +
  • [6] Protein identification using MS/MS data
    Cottrell, John S.
    [J]. JOURNAL OF PROTEOMICS, 2011, 74 (10) : 1842 - 1851
  • [7] DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput
    Demichev, Vadim
    Messner, Christoph B.
    Vernardis, Spyros I.
    Lilley, Kathryn S.
    Ralser, Markus
    [J]. NATURE METHODS, 2020, 17 (01) : 41 - +
  • [8] Hou XH, 2022, PROG BIOCHEM BIOPHYS, V49, P2364, DOI 10.16476/j.pibb.2021.0345
  • [9] Posterior error probabilities and false discovery rates:: Two sides of the same coin
    Kaell, Lukas
    Storey, John D.
    MacCoss, Michael J.
    Noble, William Stafford
    [J]. JOURNAL OF PROTEOME RESEARCH, 2008, 7 (01) : 40 - 44
  • [10] Group-DIA: analyzing multiple data-independent acquisition mass spectrometry data files
    Li, Yuanyue
    Zhong, Chuan-Qi
    Xu, Xiaozheng
    Cai, Shaowei
    Wu, Xiurong
    Zhang, Yingying
    Chen, Jinan
    Shi, Jianghong
    Lin, Shengcai
    Han, Jiahuai
    [J]. NATURE METHODS, 2015, 12 (12) : 1105 - 1106