A pattern mixture model with long short-term memory network for acute kidney injury prediction

被引:3
|
作者
Begum, M. Fathima [1 ]
Narayan, Subhashini [1 ]
机构
[1] Vellore Inst Technol, Sch Informat Technol & Engn, Vellore, India
关键词
Kidney disease; Deep learning; Long short term memory; Pattern mixture; LSTM;
D O I
10.1016/j.jksuci.2023.03.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Acute kidney disease is a serious complication characterized by poor short-and long-term outcomes in the intensive care unit. Impairment in renal function of the kidney significantly increases the mortality rate. Early detection of acute kidney disease could lead to preventive interventions, therefore deep learn-ing systems can detect it before its symptoms and consequences appear. We developed a novel deep learning architecture like Stacked long short-term memory network with pattern mixture approach for kidney injury prediction. A total of 33,754 patients encountered were retrospectively analyzed from the MIMIC-III database. A selection and pattern mixture model was used for preprocessing the time-series data. We compared the proposed result with conventional algorithms like gradient boosted trees and long short-term memory model. Our model was trained on patient time-series data for different time windows and obtained the highest accuracy of 92.4% for 12 h and 92.6% for 24 h. A novel stacked long short-term memory model outperforms the machine learning model, revealing superior performance in predicting kidney injury 24 h before onset.(c) 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:172 / 182
页数:11
相关论文
共 50 条
  • [1] A Convolutional Long Short-Term Memory Neural Network Based Prediction Model
    Tian, Y. H.
    Wu, Q.
    Zhang, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (05) : 1 - 12
  • [2] Short-term wind speed prediction model based on long short-term memory network with feature extraction
    Zhongda Tian
    Xiyan Yu
    Guokui Feng
    Earth Science Informatics, 2025, 18 (4)
  • [3] Acute kidney injury: short-term and long-term effects
    James F. Doyle
    Lui G. Forni
    Critical Care, 20
  • [4] Acute kidney injury: short-term and long-term effects
    Doyle, James F.
    Forni, Lui G.
    CRITICAL CARE, 2016, 20
  • [5] Long Short-term Memory Neural Network for Network Traffic Prediction
    Zhuo, Qinzheng
    Li, Qianmu
    Yan, Han
    Qi, Yong
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [6] Long short-term memory neural network for glucose prediction
    Carrillo-Moreno, Jaime
    Perez-Gandia, Carmen
    Sendra-Arranz, Rafael
    Garcia-Saez, Gema
    Hernando, M. Elena
    Gutierrez, Alvaro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09): : 4191 - 4203
  • [7] Long Short-Term Memory Network for Wireless Channel Prediction
    Tong, Xiaoyun
    Sun, Songlin
    SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, 2018, 473 : 19 - 26
  • [8] Long short-term memory neural network for glucose prediction
    Jaime Carrillo-Moreno
    Carmen Pérez-Gandía
    Rafael Sendra-Arranz
    Gema García-Sáez
    M. Elena Hernando
    Álvaro Gutiérrez
    Neural Computing and Applications, 2021, 33 : 4191 - 4203
  • [9] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Peng Chen
    Rong Wang
    Yibin Yao
    Hao Chen
    Zhihao Wang
    Zhiyuan An
    Journal of Geodesy, 2023, 97
  • [10] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Chen, Peng
    Wang, Rong
    Yao, Yibin
    Chen, Hao
    Wang, Zhihao
    An, Zhiyuan
    JOURNAL OF GEODESY, 2023, 97 (05)