Identification of key pathways, genes and immune cell infiltration in hypoxia of high-altitude acclimatization via meta-analysis and integrated bioinformatics analysis

被引:4
作者
Li, Qiong [1 ,2 ]
Xu, Zhichao [1 ,2 ]
Fang, Fujin [1 ,2 ]
Shen, Yan [1 ,2 ]
Lei, Huan [1 ,2 ]
Shen, Xiaobing [1 ,2 ]
机构
[1] Southeast Univ, Sch Publ Hlth, Key Lab Environm Med Engn, Minist Educ, Nanjing, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Publ Hlth, Dept Epidemiol & Hlth Stat, Nanjing, Jiangsu, Peoples R China
关键词
high-altitude acclimatization; meta-analysis; bioinformatics analysis; immune infiltration; hypoxia; DEGRADATION; METABOLISM; EXPRESSION; PNEUMONIA; PHENOTYPE; PROTEIN;
D O I
10.3389/fgene.2023.1055372
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: For individuals acutely exposed to high-altitude regions, environmental hypobaric hypoxia induces several physiological or pathological responses, especially immune dysfunction. Therefore, hypoxia is a potentially lifethreatening factor, which has closely related to high-altitude acclimatization. However, its specific molecular mechanism is still unclear. Methods: The four expression profiles about hypoxia and high altitude were downloaded from the Gene Expression Omnibus database in this study. Metaanalysis of GEO datasets was performed by NetworkAnalyst online tool. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO) enrichment analysis, and visualization were performed using R (version 4.1.3) software, respectively. The CIBERSORT analysis was conducted on GSE46480 to examine immune cell infiltration. In addition, we experimentally verified the bioinformatics analysis with qRT-PCR. Results: The meta-analysis identified 358 differentially expressed genes (DEGs), with 209 upregulated and 149 downregulated. DEGs were mostly enriched in biological processes and pathways associated with hypoxia acclimatization at high altitudes, according to both GO and KEGG enrichment analyses. ERH, VBP1, BINP3L, TOMM5, PSMA4, and POLR2K were identified by taking intersections of the DEGs between meta-analysis and GSE46480 and verified by qRT-PCR experiments, which were inextricably linked to hypoxia. Immune infiltration analysis showed significant differences in immune cells between samples at sea level and high altitudes. Conclusion: Identifying the DEGs and pathways will improve our understanding of immune function during high-altitude hypoxia at a molecular level. Targeting hypoxia-sensitive pathways in immune cells is interesting in treating high-altitude sickness. This study provides support for further research on high-altitude acclimatization.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Identification of key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis
    Cai, Weisong
    Li, Haohuan
    Zhang, Yubiao
    Han, Guangtao
    PEERJ, 2020, 8
  • [22] Identification of key candidate genes and pathways in oral squamous cell carcinoma by integrated Bioinformatics analysis
    Zou, Bo
    Li, Jun
    Xu, Kai
    Liu, Jian-Lin
    Yuan, Dao-Ying
    Meng, Zhen
    Zhang, Bin
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2019, 17 (05) : 4089 - 4099
  • [23] Identification of key genes for esophageal squamous cell carcinoma via integrated bioinformatics analysis and experimental confirmation
    Hu, Jia
    Li, Rongzhen
    Miao, Huikai
    Wen, Zhesheng
    JOURNAL OF THORACIC DISEASE, 2020, 12 (06) : 3188 - +
  • [24] Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis
    Geng, Xiao-dong
    Wang, Wei-wei
    Feng, Zhe
    Liu, Ran
    Cheng, Xiao-long
    Shen, Wan-jun
    Dong, Zhe-yi
    Cai, Guang-yan
    Chen, Xiang-mei
    Hong, Quan
    Wu, Di
    JOURNAL OF DIABETES INVESTIGATION, 2019, 10 (04) : 972 - 984
  • [25] Identification of Key Genes and Pathways in Cervical Cancer by Bioinformatics Analysis
    Wu, Xuan
    Peng, Li
    Zhang, Yaqin
    Chen, Shilian
    Lei, Qian
    Li, Guancheng
    Zhang, Chaoyang
    INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2019, 16 (06): : 800 - 812
  • [26] Integrated bioinformatics analysis for the identification of key genes and signaling pathways in thyroid carcinoma
    Zhang, Bo
    Chen, Zuoyu
    Wang, Yuyun
    Fan, Guidong
    He, Xianghui
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 21 (04)
  • [27] Identification of key genes and pathways in abdominal aortic aneurysm by integrated bioinformatics analysis
    Liu, Yihai
    Wang, Xixi
    Wang, Hongye
    Hu, Tingting
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2019,
  • [28] Identification of mitophagy-related key genes and their correlation with immune cell infiltration in acute myocardial infarction via bioinformatics analysis
    Sheng, Zulong
    Zhang, Rui
    Ji, Zhenjun
    Liu, Zhuyuan
    Zhou, Yaqing
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2025, 11
  • [29] Identification of key biomarkers and immune infiltration in systemic lupus erythematosus by integrated bioinformatics analysis
    Xingwang Zhao
    Longlong Zhang
    Juan Wang
    Min Zhang
    Zhiqiang Song
    Bing Ni
    Yi You
    Journal of Translational Medicine, 19
  • [30] The Identification of Key Genes and Pathways in Glioma by Bioinformatics Analysis
    Liu, Mingfa
    Xu, Zhennan
    Du, Zepeng
    Wu, Bingli
    Jin, Tao
    Xu, Ke
    Xu, Liyan
    Li, Enmin
    Xu, Haixiong
    JOURNAL OF IMMUNOLOGY RESEARCH, 2017, 2017