Role of solute atoms and vacancy in hydrogen embrittlement mechanism of aluminum: A first-principles study

被引:16
作者
Li, Yuanyuan [1 ,2 ]
Wang, Qian [1 ]
Zhang, Huawei [1 ,2 ]
Zhu, Hongyi [1 ]
Wang, Mingliang [1 ,3 ,4 ]
Wang, Haowei [1 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Anhui Prov Engn Res Ctr Aluminum Matrix, Huaibei 235000, Peoples R China
[3] Huaibei Normal Univ, Elect Informat Coll, Sch Phys, Huaibei 235000, Peoples R China
[4] Shanghai Jiao Tong Univ Anhui, Inst Alum Mat, Huaibei 235000, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Hydrogen embrittlement; Solute atoms; Vacancy; Aluminum; First-principles study; TOTAL-ENERGY CALCULATIONS; 1ST PRINCIPLES; AL; CU; BEHAVIOR; PRECIPITATE; METALS; MICROSTRUCTURE; SEGREGATION; DIFFUSION;
D O I
10.1016/j.ijhydene.2022.10.257
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen trapping performances of Al with solute atoms X (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, or Zn) and X-vacancy defects are investigated using First-principles method. For X -doped Al supercells, most structures show strong alloying ability. Among the solute atoms studied, Cr is the most useful element to trap H due to its lowest H trapping energy. For vacancy@X-doped Al supercells, the strong interactions of X-vacancy are explored. All vacancy@X-doped Al supercells are more favorable to capture H than X-doped Al super-cells. In addition, both elastic and chemical interactions should comparably contribute to H-X or H-X-vacancy interactions in Al. Solute atoms and vacancy may regulate electron distribution of Al to enhance the ability of capturing H. Overall, our insights present the quantitative role of solute atoms and vacancy in H trapping for Al, and guide the design of new alloys with high resistance to hydrogen embrittlement.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4516 / 4528
页数:13
相关论文
共 78 条
[1]   A QUANTUM-THEORY OF MOLECULAR-STRUCTURE AND ITS APPLICATIONS [J].
BADER, RFW .
CHEMICAL REVIEWS, 1991, 91 (05) :893-928
[2]   LOW-TEMPERATURE LATTICE-PARAMETERS OF AL AND AL-ZN ALLOYS AND GRUNEISEN PARAMETER OF AL [J].
BANDYOPADHYAY, J ;
GUPTA, KP .
CRYOGENICS, 1978, 18 (01) :54-55
[3]   First-principle modeling of hydrogen site solubility and diffusion in disordered Ti-V-Cr alloys [J].
Bavrina, O. O. ;
Shelyapina, M. G. ;
Klyukin, K. A. ;
Fruchart, D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (36) :17338-17345
[4]  
BEACHEM CD, 1972, METALL TRANS, V3, P437
[5]   Effects of microstructure on hydrogen-induced cracking in aluminum alloys [J].
Ben Ali, N. ;
Tanguy, D. ;
Estevez, R. .
SCRIPTA MATERIALIA, 2011, 65 (03) :210-213
[6]   HYDROGEN-ENHANCED LOCALIZED PLASTICITY - A MECHANISM FOR HYDROGEN-RELATED FRACTURE [J].
BIRNBAUM, HK ;
SOFRONIS, P .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 176 (1-2) :191-202
[7]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[8]   Transforming solid-state precipitates via excess vacancies [J].
Bourgeois, Laure ;
Zhang, Yong ;
Zhang, Zezhong ;
Chen, Yiqiang ;
Medhekar, Nikhil, V .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel [J].
Breen, Andrew J. ;
Stephenson, Leigh T. ;
Sun, Binhan ;
Li, Yujiao ;
Kasian, Olga ;
Raabe, Dierk ;
Herbig, Michael ;
Gault, Baptiste .
ACTA MATERIALIA, 2020, 188 :108-120
[10]   Characterization of trapped hydrogen in exfoliation corroded aluminium alloy 2024 [J].
Charitidou, E ;
Papapolymerou, G ;
Haidemenopoulos, GN ;
Hasiotis, N ;
Bontozoglou, V .
SCRIPTA MATERIALIA, 1999, 41 (12) :1327-1332