Mean first-passage time of cell migration in confined domains

被引:2
作者
Serrano, Helia [1 ]
Alvarez-Estrada, Ramon F. [2 ]
Calvo, Gabriel F. [3 ,4 ]
机构
[1] Univ Castilla La Mancha, Fac Ciencias & Tecnol Quim, Dept Matemat, Ciudad Real 13071, Spain
[2] Univ Complutense Madrid, Dept Fis Teor, Madrid 28040, Spain
[3] Univ Castilla La Mancha, Dept Matemat, Ciudad Real 13071, Spain
[4] Univ Castilla La Mancha, MOLAB Math Oncol Lab, Ciudad Real 13071, Spain
关键词
boundary-value problems; cell migration; Dirichlet and Neumann boundary conditions; first-passage time; integral equations; metastasis; Poisson-like equations;
D O I
10.1002/mma.8978
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A number of key biological processes involving cell migration in which cells traverse boundaries separating well-defined tissues can be modeled in terms of mean first-passage time (MFPT) problems in confined domains. Motivated by this scenario, we consider suitable three-dimensional domains omega$$ \Omega $$ on which MFPT functions T$$ T $$, fulfilling a Poisson-like equation and different boundary conditions on the surface S$$ S $$ enclosing omega$$ \Omega $$, are studied. By extending methods coming from potential theory, the calculation of T$$ T $$ boils down to dealing with inhomogeneous linear integral equations having singular kernels on S$$ S $$. The latter are solved compactly and yield consistent T$$ T $$'s for several domains and homogeneous boundary conditions. Moreover, the integral equation approach allows us to analyze the MFPT with mixed (Dirichlet-Neumann) boundary conditions on S$$ S $$ for the case of a closed spherical surface with Dirichlet conditions on most of S$$ S $$, except for a small complementary surface domain with Neumann conditions.
引用
收藏
页码:7435 / 7453
页数:19
相关论文
共 28 条
  • [1] Narrow Escape of Interacting Diffusing Particles
    Agranov, Tal
    Meerson, Baruch
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (12)
  • [2] Arfken G.B., 2013, MATH METHODS PHYS, V7th ed.
  • [3] DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE EQUATION IN A FINITE DOMAIN .1. 3-DIMENSIONAL PROBLEM WITH SMOOTH BOUNDARY SURFACE
    BALIAN, R
    BLOCH, C
    [J]. ANNALS OF PHYSICS, 1970, 60 (02) : 401 - &
  • [4] Co-option of Neutrophil Fates by Tissue Environments
    Ballesteros, Ivan
    Rubio-Ponce, Andrea
    Genua, Marco
    Lusito, Eleonora
    Kwok, Immanuel
    Fernandez-Calvo, Gabriel
    Khoyratty, Tariq E.
    van Grinsven, Erinke
    Gonzalez-Hernandez, Sara
    Angel Nicolas-Avila, Jose
    Vicanolo, Tommaso
    Maccataio, Antonio
    Benguria, Alberto
    Li, Jackson LiangYao
    Adrover, Jose M.
    Aroca-Crevillen, Alejandra
    Quintana, Juan A.
    Martin-Salamanca, Sandra
    Mayo, Francisco
    Ascher, Stefanie
    Barbiera, Giulia
    Soehnlein, Oliver
    Gunzer, Matthias
    Ginhoux, Florent
    Sanchez-Cabo, Fatima
    Nistal-Villan, Estanislao
    Schulz, Christian
    Dopazo, Ana
    Reinhardt, Christoph
    Udalova, Irina A.
    Ng, Lai Guan
    Ostuni, Renato
    Hidalgo, Andres
    [J]. CELL, 2020, 183 (05) : 1282 - +
  • [5] Integro-differential equations linked to compound birth processes with infinitely divisible addends
    Beghin, Luisa
    Gajda, Janusz
    Maheshwari, Aditya
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,
  • [6] From first-passage times of random walks in confinement to geometry-controlled kinetics
    Benichou, O.
    Voituriez, R.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 539 (04): : 225 - 284
  • [7] Narrow-escape time problem:: Time needed for a particle to exit a confining domain through a small window
    Benichou, O.
    Voituriez, R.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (16)
  • [8] On discontinuous solutions of the integral equations of electrostatics
    Cade, R
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 1995, 55 (03) : 205 - 220
  • [9] Physical influences of the extracellular environment on cell migration
    Charras, Guillaume
    Sahai, Erik
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2014, 15 (12) : 813 - 824
  • [10] Doi M., 1986, The Theory of Polymer Dynamics