Isometric Extensions of Anosov Flows via Microlocal Analysis

被引:2
|
作者
Lefeuvre, Thibault [1 ,2 ]
机构
[1] Univ Paris, F-75006 Paris, France
[2] Sorbonne Univ, CNRS, IMJ PRG, F-75006 Paris, France
关键词
X-RAY TRANSFORM; ZETA-FUNCTIONS; ERGODICITY;
D O I
10.1007/s00220-022-04561-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this note is to revisit the classical framework developed by Brin and Pesin (Izv Akad Nauk SSSR Ser Mat 38:170-212, 1974), Brin (Mat Zametki 18(3):453-465, 1975, Funkcional Anal i Prilozen 9(1):9-19, 1975) and others to study ergodicity and mixing properties of isometric extensions of volume-preserving Anosov flows, using the microlocal framework developed in the theory of Pollicott-Ruelle resonances. The approach of the present note is reinvested in a crucial way in the companion paper (Cekic et al. in On the ergodicity of the frame flowon even-dimensional manifolds, 2021) in order to show ergodicity of the frame flow on negatively-curved Riemannian manifolds under nearly 1/4-pinched curvature assumption (resp. nearly 1/2-pinched) in dimension 4 and 4l + 2, l > 0 (resp. dimension 4l, l > 0).
引用
收藏
页码:453 / 479
页数:27
相关论文
共 11 条