Convergence rate analysis of proximal iteratively reweighted l1 methods for lp regularization problems

被引:0
|
作者
Wang, Hao [1 ]
Zeng, Hao [1 ]
Wang, Jiashan [2 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Kurdyka-Lojasiewicz property; Iteratively reweighted algorithm; l(p) regularization; Convergence rate; MINIMIZATION; ALGORITHM; NONCONVEX; SPARSITY;
D O I
10.1007/s11590-022-01907-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we focus on the local convergence rate analysis of the proximal iteratively reweighted l(1) algorithms for solving l(p) regularization problems, which are widely applied for inducing sparse solutions. We show that if the KurdykaLojasiewicz property is satisfied, the algorithm converges to a unique first-order stationary point; furthermore, the algorithm has local linear convergence or local sublinear convergence. The theoretical results we derived are much stronger than the existing results for iteratively reweighted l(1) algorithms.
引用
收藏
页码:413 / 435
页数:23
相关论文
共 29 条