Detection of COVID-19 from chest X-ray images: Boosting the performance with convolutional neural network and transfer learning

被引:17
|
作者
Asif, Sohaib [1 ,2 ,3 ]
Yi Wenhui [1 ,2 ]
Amjad, Kamran [1 ,2 ]
Jin, Hou [4 ]
Tao, Yi [5 ]
Si Jinhai [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Key Lab Informat Photon Technol Shaanxi Prov, Sch Elect Sci & Engn,Minist Educ, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Sch Elect Sci & Engn, Key Lab Phys Elect & Devices,Minist Educ, Xian 710049, Shaanxi, Peoples R China
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China
[4] Xian Med Univ, Sch Basic Med Sci, Xian, Peoples R China
[5] Xi An Jiao Tong Univ, Sch Comp Sci & Engn, Xian, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
chest X-rays; COVID-19; detection; deep CNN; medical image analysis; transfer learning; VGG16; DEEP; CORONAVIRUS;
D O I
10.1111/exsy.13099
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Coronavirus disease (COVID-19) is a pandemic that has caused thousands of casualties and impacts all over the world. Most countries are facing a shortage of COVID-19 test kits in hospitals due to the daily increase in the number of cases. Early detection of COVID-19 can protect people from severe infection. Unfortunately, COVID-19 can be misdiagnosed as pneumonia or other illness and can lead to patient death. Therefore, in order to avoid the spread of COVID-19 among the population, it is necessary to implement an automated early diagnostic system as a rapid alternative diagnostic system. Several researchers have done very well in detecting COVID-19; however, most of them have lower accuracy and overfitting issues that make early screening of COVID-19 difficult. Transfer learning is the most successful technique to solve this problem with higher accuracy. In this paper, we studied the feasibility of applying transfer learning and added our own classifier to automatically classify COVID-19 because transfer learning is very suitable for medical imaging due to the limited availability of data. In this work, we proposed a CNN model based on deep transfer learning technique using six different pre-trained architectures, including VGG16, DenseNet201, MobileNetV2, ResNet50, Xception, and EfficientNetB0. A total of 3886 chest X-rays (1200 cases of COVID-19, 1341 healthy and 1345 cases of viral pneumonia) were used to study the effectiveness of the proposed CNN model. A comparative analysis of the proposed CNN models using three classes of chest X-ray datasets was carried out in order to find the most suitable model. Experimental results show that the proposed CNN model based on VGG16 was able to accurately diagnose COVID-19 patients with 97.84% accuracy, 97.90% precision, 97.89% sensitivity, and 97.89% of F1-score. Evaluation of the test data shows that the proposed model produces the highest accuracy among CNNs and seems to be the most suitable choice for COVID-19 classification. We believe that in this pandemic situation, this model will support healthcare professionals in improving patient screening.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] COVID-19 detection in X-ray images using convolutional neural networks
    Arias-Garzon, Daniel
    Alzate-Grisales, Jesus Alejandro
    Orozco-Arias, Simon
    Arteaga-Arteaga, Harold Brayan
    Bravo-Ortiz, Mario Alejandro
    Mora-Rubio, Alejandro
    Saborit-Torres, Jose Manuel
    Serrano, Joaquim aengel Montell
    Vaya, Maria de la Iglesia
    Cardona-Morales, Oscar
    Tabares-Soto, Reinel
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6
  • [22] Transfer Learning Methods for Classification of COVID-19 Chest X-ray Images
    Singh, Hardit
    Saini, Simarjeet S.
    Lakshminarayanan, Vasudevan
    MULTIMODAL BIOMEDICAL IMAGING XVI, 2021, 11634
  • [23] Learning effective embedding for automated COVID-19 prediction from chest X-ray images
    Ganesh, Sree T. N.
    Satish, Rishi
    Sridhar, Rajeswari
    MULTIMEDIA SYSTEMS, 2023, 29 (02) : 739 - 751
  • [24] Detection and Classification of COVID 19 using Convolutional Neural Network from Chest X-ray Images
    Chakravorti, Tatiana
    Addala, Vinay Kumar
    Verma, J. Shivam
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [25] Fine-Tuning Convolutional Neural Networks for COVID-19 Detection from Chest X-ray Images
    Zhao, Wentao
    Jiang, Wei
    Qiu, Xinguo
    DIAGNOSTICS, 2021, 11 (10)
  • [26] Detection of Covid-19 in Chest X-ray Image using CLAHE and Convolutional Neural Network
    Umri, Buyut Khoirul
    Akhyari, Muhammad Wafa
    Kusrini, Kusrini
    PROCEEDINGS OF ICORIS 2020: 2020 THE 2ND INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEM (ICORIS), 2020, : 125 - 129
  • [27] CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images
    Khan, Asif Iqbal
    Shah, Junaid Latief
    Bhat, Mohammad Mudasir
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 196 (196)
  • [28] Analysis of COVID-19 Detection Algorithms Based on Convolutional Neural Network Models Using Chest X-ray Images
    Nair, Archana R.
    Ajai, A. S. Remya
    ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT II, 2022, 1614 : 52 - 63
  • [29] Chest x-ray images: transfer learning model in COVID-19 detection
    Mao, Siqi
    Kulbayeva, Saltanat
    Osadchuk, Mikhail
    JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2025, 31 (01)
  • [30] Detection of COVID-19 from X-Ray Images Using Transfer Learning Neural Networks
    Majeed, Sayf A.
    Darghaoth, Ahmed M. H.
    Hamed, Nama M. Z.
    Yahya, Yahya Ahmed
    Raed, Sara
    Dawood, Younis S.
    PROCEEDING OF 2021 2ND INFORMATION TECHNOLOGY TO ENHANCE E-LEARNING AND OTHER APPLICATION (IT-ELA 2021), 2021, : 58 - 63