LOCAL FOURIER ANALYSIS OF p-MULTIGRID FOR HIGH-ORDER FINITE ELEMENT OPERATORS

被引:2
作者
Thompson, Jeremy L. [1 ]
Brown, Jed [1 ]
He, Yunhui [2 ]
机构
[1] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
关键词
local Fourier analysis; p-multigrid; high-order; finite elements; STRATEGY;
D O I
10.1137/21M1431199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multigrid methods are popular for solving linear systems derived from discretizing PDEs. Local Fourier analysis (LFA) is a technique for investigating and tuning multigrid methods. P-multigrid is popular for high-order or spectral finite element methods, especially on unstructured meshes. In this paper, we introduce LFAToolkit.jl, a new Julia package for LFA of high-order finite element methods. LFAToolkit.jl analyzes preconditioning techniques for arbitrary systems of second order PDEs and supports mixed finite element methods. Specifically, we develop LFA of p-multigrid with arbitrary second-order PDEs using high-order finite element discretizations and examine the performance of Jacobi and Chebyshev smoothing for two-grid schemes with aggressive p-coarsening. A natural extension of this LFA framework is the analysis of h-multigrid for finite element discretizations or finite difference discretizations that can be represented in the language of finite elements. With this extension, we can replicate previous work on the LFA of h-multigrid for arbitrary order discretizations using a convenient and extensible abstraction. Examples in one, two, and three dimensions are presented to validate our LFA of p-multigrid for the Laplacian and linear elasticity.
引用
收藏
页码:S351 / S370
页数:20
相关论文
共 33 条
  • [1] Parallel multigrid smoothing: polynomial versus Gauss-Seidel
    Adams, M
    Brezina, M
    Hu, J
    Tuminaro, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 188 (02) : 593 - 610
  • [2] Balay S., 2022, PETSCTAO USERS MANUA
  • [3] BRANDT A, 1982, LECT NOTES MATH, V960, P220
  • [4] BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
  • [5] Local Fourier Analysis of Multigrid Methods with Polynomial Smoothers and Aggressive Coarsening
    Brannick, James
    Hu, Xiaozhe
    Rodrigo, Carmen
    Zikatanov, Ludmil
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2015, 8 (01): : 1 - 21
  • [6] BRIGGS W. L., 2000, A Multigrid Tutorial, V2nd, DOI DOI 10.1137/1.9780898719505
  • [7] Brown J., 2021, J. Open Sour. Softw., V6, P2945, DOI [/10.21105/, 10.21105/joss.02945, DOI 10.21105/JOSS.02945]
  • [8] Brown J, 2022, Arxiv, DOI [arXiv:2204.01722, 10.48550/arXiv.2204.01722, DOI 10.48550/ARXIV.2204.01722]
  • [9] TUNING MULTIGRID METHODS WITH ROBUST OPTIMIZATION AND LOCAL FOURIER ANALYSIS
    Brown, Jed
    He, Yunhui
    MacLachlan, Scott
    Menickelly, Matt
    Wild, Stefan M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (01) : A109 - A138
  • [10] LOCAL FOURIER ANALYSIS OF BALANCING DOMAIN DECOMPOSITION BY CONSTRAINTS ALGORITHMS
    Brown, Jed
    He, Yunhui
    Maclachlan, Scott
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05) : S346 - S369