Robust Information Criterion for Model Selection in Sparse High-Dimensional Linear Regression Models

被引:4
作者
Gohain, Prakash Borpatra [1 ]
Jansson, Magnus [1 ]
机构
[1] KTH Royal Inst Technol, Div Informat Sci & Engn, SE-10044 Stockholm, Sweden
基金
欧洲研究理事会;
关键词
High-dimension; linear regression; data scaling; statistical model selection; subset selection; sparse estimation; scale-invariant; variable selection; CROSS-VALIDATION; MDL;
D O I
10.1109/TSP.2023.3284365
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Model selection in linear regression models is a major challenge when dealing with high-dimensional data where the number of available measurements (sample size) is much smaller than the dimension of the parameter space. Traditional methods for model selection such as Akaike information criterion, Bayesian information criterion (BIC), and minimum description length are heavily prone to overfitting in the high-dimensional setting. In this regard, extended BIC (EBIC), which is an extended version of the original BIC, and extended Fisher information criterion (EFIC), which is a combination of EBIC and Fisher information criterion, are consistent estimators of the true model as the number of measurements grows very large. However, EBIC is not consistent in high signal-to-noise-ratio (SNR) scenarios where the sample size is fixed and EFIC is not invariant to data scaling resulting in unstable behaviour. In this article, we propose a new form of the EBIC criterion called EBIC-Robust, which is invariant to data scaling and consistent in both large sample sizes and high-SNR scenarios. Analytical proofs are presented to guarantee its consistency. Simulation results indicate that the performance of EBIC-Robust is quite superior to that of both EBIC and EFIC.
引用
收藏
页码:2251 / 2266
页数:16
相关论文
共 41 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Anderson D., 2004, Model selection and multi-model inference, Second, V63, P10, DOI [DOI 10.1007/B97636, 10.1007/b97636]
[3]   A survey of cross-validation procedures for model selection [J].
Arlot, Sylvain ;
Celisse, Alain .
STATISTICS SURVEYS, 2010, 4 :40-79
[4]   A KNOCKOFF FILTER FOR HIGH-DIMENSIONAL SELECTIVE INFERENCE [J].
Barber, Rina Foygel ;
Candes, Emmanuel J. .
ANNALS OF STATISTICS, 2019, 47 (05) :2504-2537
[6]   Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise [J].
Cai, T. Tony ;
Wang, Lie .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) :4680-4688
[7]   Panning for gold: "model-X' knockoffs for high dimensional controlled variable selection [J].
Candes, Emmanuel ;
Fan, Yingying ;
Janson, Lucas ;
Lv, Jinchi .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (03) :551-577
[8]  
Chakrabarti A, 2011, HBK PHILOS SCI, V7, P583
[9]   Extended Bayesian information criteria for model selection with large model spaces [J].
Chen, Jiahua ;
Chen, Zehua .
BIOMETRIKA, 2008, 95 (03) :759-771
[10]  
Chichignoud M, 2016, J MACH LEARN RES, V17