Multi-bump Solutions for the Quasilinear Choquard Equation in RN

被引:0
作者
Shi, Zhiheng [1 ]
Huo, Yuanyuan [1 ]
Liang, Sihua [1 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
关键词
Choquard equation; Hardy-Littlewood-Sobolev critical exponent; Multi-bump solutions; Variational method; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s10883-022-09634-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deal with the following quasilinear Choquard equation in R-N : {-delta u - u delta u+ (lambda V(x) + 1)u = ( 1/ |x|(mu )*|u|(p-2 )u, x is an element of R-N, u is an element of H-1 (R-N), where 0 <mu < min{2, 8 - 2N} , 2 <= N < 4 , p is an element of [4 ,2N-mu/N-2), and lambda > 0 is a real parameter. Here, 2(& lowast; )= 2N/ N-2 if N >= 3, 2(& lowast;) = +infinity if N = 2. The potential V: R-N -> R is a nonnegative continuous function verifying some assumptions. Using variational methods, we show that if omega :=int V-1 (0) has several isolated connected components omega(1),... , omega(k )satisfying the interior of omega(j) is non-empty and that & part;omega(j) is smooth, thus for lambda > 0 large enough, the above equation has at least 2(k) -1 multi-bump solutions.
引用
收藏
页码:1357 / 1383
页数:27
相关论文
共 36 条
[1]  
Alves CO, 2006, ADV NONLINEAR STUD, V6, P491
[2]   Multi-bump positive solutions for a logarithmic Schrodinger equation with deepening potential well [J].
Alves, Claudianor O. ;
Ji, Chao .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (08) :1577-1598
[3]   EXISTENCE OF POSITIVE MULTI-BUMP SOLUTIONS FOR A SCHRODINGER-POISSON SYSTEM IN R3 [J].
Alves, Claudianor O. ;
Yang, Minbo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) :5881-5910
[4]   Multi-bump solutions for Choquard equation with deepening potential well [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. ;
Yang, Minbo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
[5]   MULTI-BUMP SOLUTIONS FOR A CLASS OF QUASILINEAR EQUATIONS ON R [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) :829-844
[6]  
Alves CO, 2009, ADV DIFFERENTIAL EQU, V14, P911
[7]  
[Anonymous], 1996, Minimax theorems, DOI DOI 10.1007/978-1-4612-4146-1
[8]  
[Anonymous], 2017, SeMA J, DOI DOI 10.1007/S40324-017-0115-3
[9]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[10]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744