Amyloid-β specific regulatory T cells attenuate Alzheimer's disease pathobiology in APP/PS1 mice

被引:22
作者
Yeapuri, Pravin [1 ]
Machhi, Jatin [1 ]
Lu, Yaman [1 ]
Abdelmoaty, Mai Mohamed [1 ]
Kadry, Rana [1 ]
Patel, Milankumar [1 ]
Bhattarai, Shaurav [1 ]
Lu, Eugene [1 ]
Namminga, Krista L. [1 ]
Olson, Katherine E. [1 ]
Foster, Emma G. [1 ]
Mosley, R. Lee [1 ]
Gendelman, Howard E. [1 ]
机构
[1] Univ Nebraska Med Ctr, Dept Pharmacol & Expt Neurosci, Omaha, NE 68198 USA
关键词
Treg cell therapy; Alzheimer's disease; Immunotherapy; Antigen specific; T cell receptor; Amyloid beta; A-BETA; MOUSE MODEL; COGNITIVE DECLINE; IMMUNIZATION; PEPTIDE; EXPRESSION; MENINGOENCEPHALITIS; NEURODEGENERATION; NEUROPATHOLOGY; PATHOGENESIS;
D O I
10.1186/s13024-023-00692-7
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
BackgroundRegulatory T cells (Tregs) maintain immune tolerance. While Treg-mediated neuroprotective activities are now well-accepted, the lack of defined antigen specificity limits their therapeutic potential. This is notable for neurodegenerative diseases where cell access to injured brain regions is required for disease-specific therapeutic targeting and improved outcomes. To address this need, amyloid-beta (A beta) antigen specificity was conferred to Treg responses by engineering the T cell receptor (TCR) specific for A beta (TCRA beta). The TCRAb were developed from disease-specific T cell effector (Teff) clones. The ability of Tregs expressing a transgenic TCRA beta (TCRA beta -Tregs) to reduce A beta burden, transform effector to regulatory cells, and reverse disease-associated neurotoxicity proved beneficial in an animal model of Alzheimer's disease.MethodsTCRA beta -Tregs were generated by CRISPR-Cas9 knockout of endogenous TCR and consequent incorporation of the transgenic TCRAb identified from A beta reactive Teff monoclones. Antigen specificity was confirmed by MHC-A beta-tetramer staining. Adoptive transfer of TCRA beta-Tregs to mice expressing a chimeric mouse-human amyloid precursor protein and a mutant human presenilin-1 followed measured behavior, immune, and immunohistochemical outcomes.ResultsTCRA beta-Tregs expressed an A beta-specific TCR. Adoptive transfer of TCRA beta-Tregs led to sustained immune suppression, reduced microglial reaction, and amyloid loads. 18F-fluorodeoxyglucose radiolabeled TCRA beta-Treg homed to the brain facilitating antigen specificity. Reduction in amyloid load was associated with improved cognitive functions.ConclusionsTCRA beta-Tregs reduced amyloid burden, restored brain homeostasis, and improved learning and memory, supporting the increased therapeutic benefit of antigen specific Treg immunotherapy for AD.
引用
收藏
页数:22
相关论文
共 90 条
  • [1] Abdelmoaty Mai M, 2023, NeuroImmune Pharm Ther, V2, P317, DOI 10.1515/nipt-2023-0015
  • [2] Accelerated Brain Volume Loss Caused by Anti-β-Amyloid Drugs A Systematic Review and Meta-analysis
    Alves, Francesca
    Kalinowski, Pawel
    Ayton, Scott
    [J]. NEUROLOGY, 2023, 100 (20) : E2114 - E2124
  • [3] Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders
    Anderson K.M.
    Olson K.E.
    Estes K.A.
    Flanagan K.
    Gendelman H.E.
    Mosley R.L.
    [J]. Translational Neurodegeneration, 3 (1)
  • [4] Human CD8+ Tregs expressing a MHC-specific CAR display enhanced suppression of human skin rejection and GVHD in NSG mice
    Bezie, Severine
    Charreau, Beatrice
    Vimond, Nadege
    Lasselin, Juliette
    Gerard, Nathalie
    Nerriere-Daguin, Veronique
    Bellier-Waast, Frederique
    Duteille, Franck
    Anegon, Ignacio
    Guillonneau, Carole
    [J]. BLOOD ADVANCES, 2019, 3 (22) : 3522 - 3538
  • [5] Expression of a Chimeric Antigen Receptor Specific for Donor HLA Class I Enhances the Potency of Human Regulatory T Cells in Preventing Human Skin Transplant Rejection
    Boardman, D. A.
    Philippeos, C.
    Fruhwirth, G. O.
    Ibrahim, M. A. A.
    Hannen, R. F.
    Cooper, D.
    Marelli-Berg, F. M.
    Watt, F. M.
    Lechler, R. I.
    Maher, J.
    Smyth, L. A.
    Lombardi, G.
    [J]. AMERICAN JOURNAL OF TRANSPLANTATION, 2017, 17 (04) : 931 - 943
  • [6] IFN-γ Production by Amyloid β-Specific Th1 Cells Promotes Microglial Activation and Increases Plaque Burden in a Mouse Model of Alzheimer's Disease
    Browne, Tara C.
    McQuillan, Keith
    McManus, Roisin M.
    O'Reilly, Julie-Ann
    Mills, Kingston H. G.
    Lynch, Marina A.
    [J]. JOURNAL OF IMMUNOLOGY, 2013, 190 (05) : 2241 - 2251
  • [7] Human Antigen-Specific Regulatory T Cells Generated by T Cell Receptor Gene Transfer
    Brusko, Todd M.
    Koya, Richard C.
    Zhu, Shirley
    Lee, Michael R.
    Putnam, Amy L.
    McClymont, Stephanie A.
    Nishimura, Michael I.
    Han, Shuhong
    Chang, Lung-Ji
    Atkinson, Mark A.
    Ribas, Antoni
    Bluestone, Jeffrey A.
    [J]. PLOS ONE, 2010, 5 (07): : 1 - 8
  • [8] Microglial signatures and their role in health and disease
    Butovsky, Oleg
    Weiner, Howard L.
    [J]. NATURE REVIEWS NEUROSCIENCE, 2018, 19 (10) : 622 - 635
  • [9] Aβ-specific Th2 cells provide cognitive and pathological benefits to Alzheimer's mice without infiltrating the CNS
    Cao, Chuanhai
    Arendash, Gary W.
    Dickson, Alexander
    Mamcarz, Malgorzata B.
    Lin, Xiaoyang
    Ethell, Douglas W.
    [J]. NEUROBIOLOGY OF DISEASE, 2009, 34 (01) : 63 - 70
  • [10] Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias
    Chetelat, Gael
    Arbizu, Javier
    Barthel, Henryk
    Garibotto, Valentina
    Law, Ian
    Morbelli, Silvia
    van de Giessen, Elsmarieke
    Agosta, Federica
    Barkhof, Frederik
    Brooks, David J.
    Carrillo, Maria C.
    Dubois, Bruno
    Fjell, Anders M.
    Frisoni, Giovanni B.
    Hansson, Oskar
    Herholz, Karl
    Hutton, Brian F.
    Jack, Clifford R., Jr.
    Lammertsma, Adriaan A.
    Landau, Susan M.
    Minoshima, Satoshi
    Nobili, Flavio
    Nordberg, Agneta
    Ossenkoppele, Rik
    Oyen, Wim J. G.
    Perani, Daniela
    Rabinovici, Gil D.
    Scheltens, Philip
    Villemagne, Victor L.
    Zetterberg, Henrik
    Drzezga, Alexander
    [J]. LANCET NEUROLOGY, 2020, 19 (11) : 951 - 962