Linear polarization and narrow-linewidth external-cavity semiconductor laser based on birefringent Bragg grating optical feedback

被引:4
作者
Chen, Jiaqi [1 ,2 ]
Chen, Chao [1 ,2 ,3 ]
Guo, Qi [4 ]
Sun, Jingjing [1 ]
Zhang, Jianwei [1 ]
Zhou, Yinli [1 ]
Liu, Zhaohui [1 ]
Yu, Yongsen [4 ]
Qin, Li [1 ,3 ]
Ning, Yongqiang [1 ,3 ]
Wang, Lijun [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Luminescence & Applicat, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Xiongan Innovat Inst, Xiongan 071800, Peoples R China
[4] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Semiconductor laser; Narrow linewidth; Linear polarization; Birefringent Bragg grating; BY-POINT INSCRIPTION; DIODE-LASERS; FIBER; CESIUM;
D O I
10.1016/j.optlastec.2023.110211
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate an external-cavity semiconductor laser (ECSL) with linear polarization and a narrow linewidth. A birefringent Bragg grating prepared by a femtosecond laser point-by-point technique in a polarization-maintaining fiber (PMF) is used to provide external-cavity feedback, and its polarization-dependent characteristics enable selection of the main polarization mode and linewidth narrowing of the ridge waveguide emission gain chip (GC). This compact and robust ECSL achieves an output power of > 60 mW and a polarization extinction ratio (PER) of > 30 dB. We simulate and calculate the linewidth and injection current, while a Lorentz linewidth of 2.58 kHz is obtained based on delayed self-heterodyne beat frequency measurement. This flexible and cost-effective solution allows realization of a compact ECSL with linear polarization and a narrow linewidth.
引用
收藏
页数:7
相关论文
共 37 条
[1]   External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55μm and methods for linewidth measurement [J].
Bennetts, Shayne ;
McDonald, Gordon D. ;
Hardman, Kyle S. ;
Debs, John E. ;
Kuhn, Carlos C. N. ;
Close, John D. ;
Robins, Nicholas P. .
OPTICS EXPRESS, 2014, 22 (09) :10642-10654
[2]   Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses [J].
Burgmeier, Joerg ;
Waltermann, Christian ;
Flachenecker, Guenter ;
Schade, Wolfgang .
OPTICS LETTERS, 2014, 39 (03) :540-543
[3]  
Canagasabey A., 2011, IQEC/CLEO Pacific Rim, P1392
[4]   Optical Clocks and Relativity [J].
Chou, C. W. ;
Hume, D. B. ;
Rosenband, T. ;
Wineland, D. J. .
SCIENCE, 2010, 329 (5999) :1630-1633
[5]  
Coldren LA, 2012, CONF LASER ELECTR
[6]   Multi-line fiber laser system for cesium and rubidium atom interferometry [J].
Diboune, Clement ;
Zahzam, Nassim ;
Bidel, Yannick ;
Cadoret, Malo ;
Bresson, Alexandre .
OPTICS EXPRESS, 2017, 25 (15) :16898-16906
[7]   Narrow-linewidth single-polarization fiber laser using non-polarization optics [J].
Hao, Liyun ;
Wang, Xiaohan ;
Jia, Kunpeng ;
Zhao, Gang ;
Xie, Zhenda ;
Zhu, Shining .
OPTICS LETTERS, 2021, 46 (15) :3769-3772
[8]   Femtosecond laser-inscribed polarization-maintaining fiber Bragg grating using line-by-line technique for generating wavelength-switchable erbium-doped fiber lasers [J].
He, Wei ;
Hu, Jun ;
Li, Shaode ;
Liu, Haochong ;
Ma, Siqi ;
Zhu, Lianqing .
OPTICAL FIBER TECHNOLOGY, 2023, 78
[9]   THEORY OF THE LINEWIDTH OF SEMICONDUCTOR-LASERS [J].
HENRY, CH .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1982, 18 (02) :259-264
[10]   Linewidth optimization in fiber grating Fabry-Perot laser [J].
Hisham, Hisham Kadhum ;
Mahdiraji, Ghafour Amouzad ;
Abas, Ahmad Fauzi ;
Mahdi, Mohd Adzir ;
Adikan, Faisal Rafiq Mahamd .
OPTICAL ENGINEERING, 2014, 53 (02)