Ni1-x Zn x Fe2O4@CoO (x=0.25 and 0.50) Nanoparticles for Magnetic Resonance Imaging

被引:5
作者
Konwar, Korobi [1 ]
Bora, Mayuri [1 ]
Kaushik, Som Datta [2 ]
Chaturvedi, Anamika [3 ]
Kumar, Dinesh [3 ]
Dutta, Anupam [4 ]
Mukhopadhyay, Rupak [4 ]
Babu, Peram Delli [2 ]
Sharma, Pooja [5 ]
Lodha, Saurabh [5 ]
Sen, Debasis [6 ]
Ajayan, Pulickel M. [7 ]
Deb, Pritam [1 ]
机构
[1] Tezpur Univ Cent Univ, Dept Phys, Tezpur 784028, India
[2] UGC DAE Consortium Sci Res, Mumbai 400085, India
[3] Ctr Biomed Res, Lucknow 226014, India
[4] Tezpur Univ Cent Univ, Dept Mol Biol & Biotechnol, Tezpur 784028, India
[5] Indian Inst Technol, Dept Elect Engn, Mumbai 400076, India
[6] Bhabha Atom Res Ctr, Solid State Phys Div, Mumbai 400085, India
[7] Rice Univ, Dept Mat Sci & Nano Engn, Houston, TX 77005 USA
关键词
MRI-transverse relaxivity; contrast agent; inhomogeneous anisotropy energy landscape; easy axesalignment; asymmetric coercive field; PAIR CORRELATION-FUNCTIONS; IRON-OXIDE NANOPARTICLES; SPIN RELAXATION; MRI CONTRAST; TRANSLATIONAL DIFFUSION; SURFACE; AGENTS; NANOSTRUCTURES; NANOCRYSTALS; PERFORMANCE;
D O I
10.1021/acsanm.3c04658
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanomagnets with regulated magnetic properties are incredibly advantageous in the framework of magnetic resonance imaging (MRI) for medical imaging. This work aims to achieve an improved MRI-contrast signal by considering variation in octahedral site substitution of Zn2+ ions in nanoensembles of Ni1-x Znx Fe2O4@CoO (x = 0.25 and 0.50) nanoparticles. We observe enhanced MRI-contrast efficiency in nanoensembles of Ni0.75Zn0.25Fe2O4@CoO with superior ground state magnetization of 210.6 mu(B)/cell and a higher asymmetric coercive field than that of Ni0.5Zn0.5Fe2O4@CoO. In addition, both systems show cell viability to a normal HEK cell line until 0.5 mM and no pro-tumorigenic activity until 1 mM. The ratio of transverse to longitudinal relaxivity (r(2)/r(1)) gives a value of 30 for Ni0.75Zn0.25Fe2O4@CoO and 19.5 for Ni0.5Zn0.5Fe2O4@CoO, resulting in promising candidates for MRI-transverse contrast agents with a small metal concentration up to 0.375 mM. A superior MRI-contrast signal is achieved in Ni0.75Zn0.25Fe2O4@CoO. As a result, we successfully achieve enhancement in MRI-contrast efficiency by considering manipulation in octahedral site substitution in cell-viable nanoensembles of Ni1-x Znx Fe2O4@CoO (x = 0.25 and 0.50) and attaining the significant association of anisotropy field strength and easy axes alignment toward proton dephasing in the MRI-relaxivity mechanism.
引用
收藏
页码:20440 / 20457
页数:18
相关论文
共 70 条
[11]   Determination of the blocking temperature of magnetic nanoparticles: The good, the bad, and the ugly [J].
Bruvera, I. J. ;
Mendoza Zelis, P. ;
Pilar Calatayud, M. ;
Goya, G. F. ;
Sanchez, F. H. .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (18)
[12]   Nanoscale Patterning of Zinc Oxide from Zinc Acetate Using Electron Beam Lithography for the Preparation of Hard Lithographic Masks [J].
Chaker, Ahmad ;
Alty, Hayden R. ;
Tian, Peng ;
Kotsovinos, Anastasios ;
Timco, Grigore A. ;
Muryn, Christopher A. ;
Lewis, Scott M. ;
Winpenny, Richard E. P. .
ACS APPLIED NANO MATERIALS, 2021, 4 (01) :406-413
[13]   A novel phosphatizing strategy to engineering CoO/Co1.94P@carbon polyhedron heterostructures for enhanced lithium-ion battery [J].
Chen, Zhuo ;
Li, Haibo .
JOURNAL OF MATERIALS SCIENCE, 2021, 56 (04) :3346-3353
[14]   Hybrid Nanotrimers for Dual T1 and T2-Weighted Magnetic Resonance Imaging [J].
Cheng, Kai ;
Yang, Meng ;
Zhang, Ruiping ;
Qin, Chunxia ;
Su, Xinhui ;
Cheng, Zhen .
ACS NANO, 2014, 8 (10) :9884-9896
[15]   ORDERING IN FERROMAGNETS WITH RANDOM ANISOTROPY [J].
CHUDNOVSKY, EM ;
SASLOW, WM ;
SEROTA, RA .
PHYSICAL REVIEW B, 1986, 33 (01) :251-261
[16]   Maghemite-gold core-shell nanostructures (γ-Fe2O3@Au) surface-functionalized with aluminium phthalocyanine for multi-task imaging and therapy [J].
Coelho, B. C. P. ;
Siqueira, E. R. ;
Ombredane, A. S. ;
Joanitti, G. A. ;
Chaves, S. B. ;
da Silva, S. W. ;
Chaker, J. A. ;
Longo, J. P. F. ;
Azevedo, R. B. ;
Morais, P. C. ;
Sousa, M. H. .
RSC ADVANCES, 2017, 7 (19) :11223-11232
[17]   Mechanisms of Proton Spin Dephasing in a System of Magnetic Particles [J].
de Haan, Hendrick W. .
MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (06) :1748-1758
[18]   Gd3+-Functionalized Lithium Niobate Nanoparticles for Dual Multiphoton and Magnetic Resonance Bioimaging [J].
De Matos, Raphael ;
Gheata, Adrian ;
Campargue, Gabriel ;
Vuilleumier, Jeremy ;
Nicolle, Laura ;
Pierzchala, Katarzyna ;
Jelescu, Ileana ;
Lucarini, Fiorella ;
Gautschi, Ivan ;
Riporto, Florian ;
Le Dantec, Ronan ;
Mugnier, Yannick ;
Chauvin, Anne-Sophie ;
Mazzanti, Marinella ;
Staedler, Davide ;
Diviani, Dario ;
Bonacina, Luigi ;
Gerber-Lemaire, Sandrine .
ACS APPLIED NANO MATERIALS, 2022, 5 (02) :2912-2922
[19]   Simultaneous Visualization of Covalent and Noncovalent Interactions Using Regions of Density Overlap [J].
de Silva, Piotr ;
Corminboeuf, Clemence .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (09) :3745-3756
[20]   Optimal Design of Hierarchical Cloud-Fog&Edge Computing Networks with Caching [J].
Fan, Xiaoqian ;
Zheng, Haina ;
Jiang, Ruihong ;
Zhang, Jinyu .
SENSORS, 2020, 20 (06)