Right angled Artin groups;
Minimal genus;
Group homology;
HOMOLOGY;
D O I:
10.1007/s10711-023-00815-w
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We investigate the minimal genus problem for the second homology of a right angled Artin group (RAAG). Firstly, we present a lower bound for the minimal genus of a second homology class, equal to half the rank of the corresponding cap product matrix. We show that for complete graphs, trees, and complete bipartite graphs, this bound is an equality, and furthermore in these cases the minimal genus can always be realised by a disjoint union of tori. Additionally, we give a full characterisation of classes that are representable by a single torus. However, the minimal genus of a second homology class of a RAAG is not always realised by a disjoint union of tori as an example we construct in the pentagon shows.
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
Zhao Xu-An
Gao Hongzhu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China