Instrumental variable estimation for functional concurrent regression models

被引:0
作者
Petrovich, Justin [1 ]
Taoufik, Bahaeddine [2 ]
Davis, Zachary George [3 ]
机构
[1] St Vincent Coll, Dept Business Adm, Latrobe, PA 15650 USA
[2] St Josephs Univ, Dept Math, Philadelphia, PA USA
[3] St Vincent Coll, Dept Econ, Latrobe, PA USA
关键词
Functional concurrent regression; sparse functional data; instrumental variable; labor supply elasticity; WAGES; IDENTIFICATION; SUBSTITUTION; INCOME;
D O I
10.1080/02664763.2023.2229968
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we propose a functional concurrent regression model to estimate labor supply elasticities over the years 1988 through 2014 using Current Population Survey data. Assuming, as is common, that individuals' wages are endogenous, we introduce instrumental variables in a two-stage least squares approach to estimate the desired labor supply elasticities. Furthermore, we tailor our estimation method to sparse functional data. Though recent work has incorporated instrumental variables into other functional regression models, to our knowledge this has not yet been done in the functional concurrent regression model, and most existing literature is not suited for sparse functional data. We show through simulations that this two-stage least squares approach greatly eliminates the bias introduced by a naive model (i.e. one that does not acknowledge endogeneity) and produces accurate coefficient estimates for moderate sample sizes.
引用
收藏
页码:1570 / 1589
页数:20
相关论文
共 50 条
[41]   Specification testing in nonparametric instrumental variable estimation [J].
Horowitz, Joel L. .
JOURNAL OF ECONOMETRICS, 2012, 167 (02) :383-396
[42]   NONPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATION UNDER MONOTONICITY [J].
Chetverikov, Denis ;
Wilhelm, Daniel .
ECONOMETRICA, 2017, 85 (04) :1303-1320
[43]   An introduction to instrumental variable assumptions, validation and estimation [J].
Lousdal M.L. .
Emerging Themes in Epidemiology, 15 (1)
[44]   On Completeness and Consistency in Nonparametric Instrumental Variable Models [J].
Freyberger, Joachim .
ECONOMETRICA, 2017, 85 (05) :1629-1644
[45]   Recent Applications of Generalized Instrumental Variable Models [J].
Kim, Dongwoo .
SEOUL JOURNAL OF ECONOMICS, 2025, 38 (01) :51-68
[46]   Instrumental Variable Type Estimation for Generalized Varying Coefficient Models with Error-Prone Covariates [J].
ZHAO Peixin .
WuhanUniversityJournalofNaturalSciences, 2013, 18 (03) :241-246
[47]   Rank-based instrumental variable estimation for semiparametric varying coefficient spatial autoregressive models [J].
Tang, Yangbing ;
Zhang, Zhongzhan ;
Du, Jiang .
STATISTICAL PAPERS, 2024, 65 (03) :1805-1839
[48]   A Class of Algorithms for General Instrumental Variable Models [J].
Kilbertus, Niki ;
Kusner, Matt J. ;
Silva, Ricardo .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
[49]   When to use matching and weighting or regression in instrumental variable estimation? Evidence from college proximity and returns to college [J].
Tuebbicke, Stefan .
EMPIRICAL ECONOMICS, 2023, 65 (06) :2979-2999
[50]   Nonparametric instrumental variables estimation of a quantile regression model [J].
Horowitz, Joel L. ;
Lee, Sokbae .
ECONOMETRICA, 2007, 75 (04) :1191-1208