Instrumental variable estimation for functional concurrent regression models

被引:0
作者
Petrovich, Justin [1 ]
Taoufik, Bahaeddine [2 ]
Davis, Zachary George [3 ]
机构
[1] St Vincent Coll, Dept Business Adm, Latrobe, PA 15650 USA
[2] St Josephs Univ, Dept Math, Philadelphia, PA USA
[3] St Vincent Coll, Dept Econ, Latrobe, PA USA
关键词
Functional concurrent regression; sparse functional data; instrumental variable; labor supply elasticity; WAGES; IDENTIFICATION; SUBSTITUTION; INCOME;
D O I
10.1080/02664763.2023.2229968
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we propose a functional concurrent regression model to estimate labor supply elasticities over the years 1988 through 2014 using Current Population Survey data. Assuming, as is common, that individuals' wages are endogenous, we introduce instrumental variables in a two-stage least squares approach to estimate the desired labor supply elasticities. Furthermore, we tailor our estimation method to sparse functional data. Though recent work has incorporated instrumental variables into other functional regression models, to our knowledge this has not yet been done in the functional concurrent regression model, and most existing literature is not suited for sparse functional data. We show through simulations that this two-stage least squares approach greatly eliminates the bias introduced by a naive model (i.e. one that does not acknowledge endogeneity) and produces accurate coefficient estimates for moderate sample sizes.
引用
收藏
页码:1570 / 1589
页数:20
相关论文
共 50 条
  • [21] Instrumental variable estimation in semi-parametric additive hazards models
    Brueckner, Matthias
    Titman, Andrew
    Jaki, Thomas
    BIOMETRICS, 2019, 75 (01) : 110 - 120
  • [22] Using synthetic variables in instrumental variable estimation of spatial series models
    Le Gallo, Julie
    Paez, Antonio
    ENVIRONMENT AND PLANNING A-ECONOMY AND SPACE, 2013, 45 (09): : 2227 - 2242
  • [23] SEMIPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATION OF SIMULTANEOUS EQUATION SAMPLE SELECTION MODELS
    LEE, LF
    JOURNAL OF ECONOMETRICS, 1994, 63 (02) : 341 - 388
  • [24] Instrumental variable estimation with first-stage heterogeneity
    Abadie, Alberto
    Gu, Jiaying
    Shen, Shu
    JOURNAL OF ECONOMETRICS, 2024, 240 (02)
  • [25] CAUSAL PROPORTIONAL HAZARDS ESTIMATION WITH A BINARY INSTRUMENTAL VARIABLE
    Kianian, Behzad
    Kim, Jung In
    Fine, Jason P.
    Peng, Limin
    STATISTICA SINICA, 2021, 31 (02) : 673 - 699
  • [26] Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
    Xue, Lin
    Wang, Liqun
    ECONOMETRICS, 2024, 12 (03)
  • [27] Parametric Estimation for Wiener-Hammerstein Models by the Recursive Instrumental Variable Method
    Afef, Marai Ghanmi
    Houda, Salhi
    Sofien, Hajji
    Samira, Kamoun
    2016 17TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA'2016), 2016, : 711 - 716
  • [28] Instrumental variable estimation for compositional treatments
    Ailer, Elisabeth
    Mueller, Christian L.
    Kilbertus, Niki
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [29] Instrumental Variable Estimation in a Survival Context
    Tchetgen, Eric J. Tchetgen
    Walter, Stefan
    Vansteelandt, Stijn
    Martinussen, Torben
    Glymour, Maria
    EPIDEMIOLOGY, 2015, 26 (03) : 402 - 410
  • [30] Instrumental Variable Models for Discrete Outcomes
    Chesher, Andrew
    ECONOMETRICA, 2010, 78 (02) : 575 - 601