PtFe and Fe3C nanoparticles encapsulated in Fe-N-doped carbon bowl toward the oxygen reduction reaction

被引:17
作者
Zhou, Na [1 ]
Li, Yinshi [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermo Fluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxygen reduction reaction; Fe-NC nano-bowl; Fe-N-4 and Fe3C sites; PtFe nanoparticles; CORE-SHELL NANOPARTICLES; ELECTROCATALYSTS; CATALYSTS; GRAPHENE;
D O I
10.1016/j.ijhydene.2022.12.249
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high-temperature calcination strategy facilitates the formation of alloy atoms but inevitably results in the aggregation and deactivation of the metal particles for the oxygen reduction reaction (ORR) electrocatalysts. Herein, we report the successful encapsulation of Platinum-Iron (PtFe) nanoparticles (similar to 4.7 nm) in the N-doped hollow carbon hemisphere matrix (NCB) containing Fe-N and Fe3C without employing high-temperature pyrolysis, which effectively facilitates the well-dispersed Pt nanoparticles and the formation of PtFe nanoalloys. The hollow carbon hemisphere structure contributes to the expansion of the specific surface area and exposure of active sites of the catalyst, meanwhile, the modifi-cation of the surface of the carbon nano-bowl from a predominantly Fe to a functional electrocatalyst with a primarily PtFe alloy can boost the ORR catalytic activity and stability. It is found that the Pt3Fe/Fe3C-NCB catalyst exhibits the optimum ORR performance with a mass activity (0.97 A mg(-1)Pt), 5.10 times higher than the commercial Pt/C (0.19 A mg(-1)Pt). Pt3Fe/Fe3C-NCB also displays excellent durability in comparison to the commercial Pt/C after 20,000 potential cycles. Combined with the Physical characterization and the elec-trochemical test results, Fe3C-NCB plays a strong metal-support role for the encapsulated PtFe nanoparticles structure, thereby preventing nanoparticle migration and corrosion. Experimental characterization and theoretical calculations show that the appropriate PtFe alloy composition and the strain effect induced by Fe-N/Fe3C active sites are sufficient to accelerate the detachment of oxygenated species from the alloy surface, resulting in a catalyst with excellent ORR performance. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13591 / 13602
页数:12
相关论文
共 64 条
[1]   Atomically dispersed Fe-N-C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction [J].
Ao, Xiang ;
Zhang, Wei ;
Zhao, Bote ;
Ding, Yong ;
Nam, Gyutae ;
Soule, Luke ;
Abdelhafiz, Ali ;
Wang, Chundong ;
Liu, Meilin .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (09) :3032-3040
[2]   Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction [J].
Bai, Lu ;
Duan, Zhiyao ;
Wen, Xudong ;
Si, Rui ;
Guan, Jingqi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 257
[3]   MXenes for electrocatalysis applications: Modification and hybridization [J].
Bai, Xue ;
Guan, Jingqi .
CHINESE JOURNAL OF CATALYSIS, 2022, 43 (08) :2057-2090
[4]   Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution [J].
Bai, Xue ;
Wang, Liming ;
Nan, Bing ;
Tang, Tianmi ;
Niu, Xiaodi ;
Guan, Jingqi .
NANO RESEARCH, 2022, 15 (07) :6019-6025
[5]   Highly Active Fe/Pt Single-Atom Bifunctional Electrocatalysts on Biomass-Derived Carbon [J].
Cao, Lijuan ;
Wang, Xilong ;
Yang, Chen ;
Lu, Jiajia ;
Shi, Xiaoyue ;
Zhu, Hongwei ;
Liang, Han-Pu .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (01) :189-196
[6]   Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis [J].
Chattot, Raphael ;
Le Bacq, Olivier ;
Beermann, Vera ;
Kuehl, Stefanie ;
Herranz, Juan ;
Henning, Sebastian ;
Kuhn, Laura ;
Asset, Tristan ;
Guetaz, Laure ;
Renou, Gilles ;
Drnec, Jakub ;
Bordet, Pierre ;
Pasturel, Alain ;
Eychmueller, Alexander ;
Schmidt, Thomas J. ;
Strasser, Peter ;
Dubau, Laetitia ;
Maillard, Frederic .
NATURE MATERIALS, 2018, 17 (09) :827-+
[7]   Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings [J].
Choi, Juhyuk ;
Lee, Young Jun ;
Park, Dongmin ;
Jeong, Hojin ;
Shin, Sangyong ;
Yun, Hongseok ;
Lim, Jinkyu ;
Han, Junghun ;
Kim, Eun Ji ;
Jeon, Sun Seo ;
Jung, Yousung ;
Lee, Hyunjoo ;
Kim, Bumjoon J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (12) :4921-4929
[8]   High Entropy Intermetallic-Oxide Core-Shell Nanostructure as Superb Oxygen Evolution Reaction Catalyst [J].
Ding, Zhaoyi ;
Bian, Juanjuan ;
Shuang, Shuo ;
Liu, Xiaodi ;
Hu, Yuanchao ;
Sun, Chunwen ;
Yang, Yong .
ADVANCED SUSTAINABLE SYSTEMS, 2020, 4 (05)
[9]   Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells [J].
Goehl, Daniel ;
Garg, Aaron ;
Paciok, Paul ;
Mayrhofer, Karl J. J. ;
Heggen, Marc ;
Shao-Horn, Yang ;
Dunin-Borkowski, Rafal E. ;
Roman-Leshkov, Yuriy ;
Ledendecker, Marc .
NATURE MATERIALS, 2020, 19 (03) :287-+
[10]   Bridge Bonded Oxygen Ligands between Approximated FeN4Sites Confer Catalysts with High ORR Performance [J].
Gong, Liyuan ;
Zhang, Hao ;
Wang, Ying ;
Luo, Ergui ;
Li, Kui ;
Gao, Liqin ;
Wang, Yuemin ;
Wu, Zhijian ;
Jin, Zhao ;
Ge, Junjie ;
Jiang, Zheng ;
Liu, Changpeng ;
Xing, Wei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (33) :13923-13928