Scalable Polyimide-Organosilicate Hybrid Films for High-Temperature Capacitive Energy Storage

被引:140
作者
Dong, Jiufeng [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ]
Qiu, Peiqi [1 ,4 ]
Pan, Yupeng [5 ,6 ]
Niu, Yujuan [1 ,2 ,3 ]
Sun, Liang [1 ,2 ,3 ]
Pan, Zizhao [1 ,2 ,3 ]
Liu, Yuqi [1 ,2 ,3 ]
Tan, Li [1 ,2 ,3 ]
Xu, Xinwei [1 ,2 ,3 ]
Xu, Chen [5 ,6 ]
Luo, Guangfu [1 ,4 ]
Wang, Qing [7 ]
Wang, Hong [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen Engn Res Ctr Novel Elect Informat Mat & D, Shenzhen 518055, Guangdong, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Funct Oxide Mat & Devices, Shenzhen 518055, Guangdong, Peoples R China
[4] Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Guangdong, Peoples R China
[5] Southern Univ Sci & Technol, Shenzhen Grubbs Inst, Shenzhen 518055, Guangdong, Peoples R China
[6] Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Guangdong, Peoples R China
[7] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
capacitors; elevated temperature; energy storage; hybrid films; molecular engineering; POLYMER NANOCOMPOSITES; DENSITY; COMPOSITES; STRENGTH; POLYPROPYLENE; IMPROVEMENT; CONDUCTION; TRAPS;
D O I
10.1002/adma.202211487
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-temperature polymer dielectrics have broad application prospects in next-generation microelectronics and electrical power systems. However, the capacitive energy densities of dielectric polymers at elevated temperatures are severely limited by carrier excitation and transport. Herein, a molecular engineering strategy is presented to regulate the bulk-limited conduction in the polymer by bonding amino polyhedral oligomeric silsesquioxane (NH2-POSS) with the chain ends of polyimide (PI). Experimental studies and density functional theory (DFT) calculations demonstrate that the terminal group NH2-POSS with a wide-bandgap of E-g approximate to 6.6 eV increases the band energy levels of the PI and induces the formation of local deep traps in the hybrid films, which significantly restrains carrier transport. At 200 degrees C, the hybrid film exhibits concurrently an ultrahigh discharged energy density of 3.45 J cm(-3) and a high gravimetric energy density of 2.74 J g(-1), with the charge-discharge efficiency >90%, far exceeding those achieved in the dielectric polymers and nearly all other polymer nanocomposites. Moreover, the NH2-POSS terminated PI film exhibits excellent charge-discharge cyclability (>50000) and power density (0.39 MW cm(-3)) at 200 degrees C, making it a promising candidate for high-temperature high-energy-density capacitors. This work represents a novel strategy to scalable polymer dielectrics with superior capacitive performance operating in harsh environments.
引用
收藏
页数:8
相关论文
共 62 条
[31]   Flexible high-temperature dielectric materials from polymer nanocomposites [J].
Li, Qi ;
Chen, Lei ;
Gadinski, Matthew R. ;
Zhang, Shihai ;
Zhang, Guangzu ;
Li, Haoyu ;
Haque, Aman ;
Chen, Long-Qing ;
Jackson, Thomas N. ;
Wang, Qing .
NATURE, 2015, 523 (7562) :576-+
[32]   Tailoring interfacial compatibility and electrical breakdown properties in polypropylene based composites by surface functionalized POSS [J].
Li, Shengtao ;
Xie, Dongri ;
Qu, Guanghao ;
Yang, Liuqing ;
Min, Daomin ;
Cheng, Yonghong .
APPLIED SURFACE SCIENCE, 2019, 478 :451-458
[33]   A New Potential Barrier Model in Epoxy Resin Nanodielectrics [J].
Li, Shengtao ;
Yin, Guilai ;
Bai, Suna ;
Li, Jianying .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2011, 18 (05) :1535-1543
[34]   Metal-organic Framework/Polyimide composite with enhanced breakdown strength for flexible capacitor [J].
Li, Yanpeng ;
Yin, Jinghua ;
Feng, Yu ;
Li, Jialong ;
Zhao, He ;
Zhu, Congcong ;
Yue, Dong ;
Liu, Yunpeng ;
Su, Bo ;
Liu, Xiaoxu .
CHEMICAL ENGINEERING JOURNAL, 2022, 429
[35]   High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties [J].
Liu, Xue-Jie ;
Zheng, Ming-Sheng ;
Chen, George ;
Dang, Zhi-Min ;
Zha, Jun-Wei .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (01) :56-81
[36]   Towards solution-processable, thermally robust, transparent polyimidechain-end tethered organosilicate nanohybrids [J].
Nam, Ki-Ho ;
Jin, Jeong-un ;
Lee, Dong Hoon ;
Han, Haksoo ;
Goh, Munju ;
Yu, Jaesang ;
Ku, Bon-Cheol ;
You, Nam-Ho .
COMPOSITES PART B-ENGINEERING, 2019, 163 :290-296
[37]   Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface [J].
Niu, Yujuan ;
Dong, Jiufeng ;
He, Yifei ;
Xu, Xinwei ;
Li, Shuai ;
Wu, Kai ;
Wang, Qing ;
Wang, Hong .
NANO ENERGY, 2022, 97
[38]   Tailoring Poly(Styrene-co-maleic anhydride) Networks for All-Polymer Dielectrics Exhibiting Ultrahigh Energy Density and Charge-Discharge Efficiency at Elevated Temperatures [J].
Pan, Zizhao ;
Li, Li ;
Wang, Lina ;
Luo, Guangfu ;
Xu, Xinwei ;
Jin, Fei ;
Dong, Jiufeng ;
Niu, Yujuan ;
Sun, Liang ;
Guo, Chuanfei ;
Zhang, Wenqing ;
Wang, Qing ;
Wang, Hong .
ADVANCED MATERIALS, 2023, 35 (01)
[39]   Resistance of POSS Polyimide Blends to Hyperthermal Atomic Oxygen Attack [J].
Qian, Min ;
Murray, Vanessa J. ;
Wei, Wei ;
Marshall, Brooks C. ;
Minton, Timothy K. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (49) :33982-33992
[40]   Substantial Improvement of the Dielectric Strength of Cellulose-Liquid Composites: Effects of Traps at the Nanoscale Interface [J].
Qu, Guanghao ;
Cui, Huize ;
Zhu, Yuanwei ;
Yang, Liuqing ;
Li, Shengtao .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (05) :1881-1889