An ensemble algorithm using quantum evolutionary optimization of weighted type-II fuzzy system and staged Pegasos Quantum Support Vector Classifier with multi-criteria decision making system for diagnosis and grading of breast cancer
被引:8
作者:
Chatterjee, Subhashis
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad, Jharkhand, IndiaIndian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad, Jharkhand, India
Chatterjee, Subhashis
[1
]
Das, Ananya
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad, Jharkhand, IndiaIndian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad, Jharkhand, India
Das, Ananya
[1
]
机构:
[1] Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad, Jharkhand, India
Weight of evidence;
Feature selection;
Quantum genetic algorithm;
Type-II fuzzy inference system;
Pegasos Quantum Support Vector Classifier;
Grading of cancer;
MACHINE LEARNING ALGORITHMS;
FEATURE-SELECTION;
NEURAL-NETWORKS;
RISK;
PREDICTION;
LOGIC;
D O I:
10.1007/s00500-023-07939-x
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Breast cancer is a life-threatening and consequential disease due to its invasive and proliferative trait, predominantly found in women. Early detection of the cancer is a significant contributor to improved mortality and hence is an area of keen focus for ongoing researches. However, developing a technique to diagnose the severity of the patients at an early stage is a challenging task. Manual diagnostic techniques are time-consuming and result in inaccurate diagnosis of breast cancer. Prompted by these facts, a quantum optimized rule-base generated automated framework is developed to cluster the data based on degree of criticality of the cancer patients and further classify it as benign or malignant utilizing probability of malignancy of the clusters along with assignment of grades of cancer. Firstly, after implementing data pre-processing step, significant features are selected using an integrated feature selection approach. An efficient weightage algorithm is proposed incorporating the knowledge of physicians and the benefits of regression analysis which thereby provides a novel approach for detection of breast cancer. A novel ensemble clustering and classification algorithm employing voting-based Weighted Interval Type-II Fuzzy Inference System and Staged Pegasos Quantum Support Vector Classifier is then developed basis the prioritization of clusters depicting the critical state of breast cancer. A grading approach is also proposed based on fuzzy linguistic multi-criteria decision making system. Finally, the research is validated on Wisconsin Breast Cancer dataset. The detailed implementation of the proposed integrated model is accomplished to establish its superiority over other existing models in the literature.
机构:
Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, MalaysiaUniv Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, Malaysia
Sahran, Shahnorbanun
;
Albashish, Dheeb
论文数: 0引用数: 0
h-index: 0
机构:
Al Balqa Appl Univ, Prince Abdullah Bin Ghazi Fac Informat Technol, Comp Sci Dept, As Salt, JordanUniv Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, Malaysia
Albashish, Dheeb
;
Abdullah, Azizi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, MalaysiaUniv Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, Malaysia
Abdullah, Azizi
;
Abd Shukor, Nordashima
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Med Ctr, Dept Pathol, Batu 9 Cheras 56000, MalaysiaUniv Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, Malaysia
Abd Shukor, Nordashima
;
Pauzi, Suria Hayati Md
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Med Ctr, Dept Pathol, Batu 9 Cheras 56000, MalaysiaUniv Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, Malaysia
机构:
Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, MalaysiaUniv Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, Malaysia
Sahran, Shahnorbanun
;
Albashish, Dheeb
论文数: 0引用数: 0
h-index: 0
机构:
Al Balqa Appl Univ, Prince Abdullah Bin Ghazi Fac Informat Technol, Comp Sci Dept, As Salt, JordanUniv Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, Malaysia
Albashish, Dheeb
;
Abdullah, Azizi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, MalaysiaUniv Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, Malaysia
Abdullah, Azizi
;
Abd Shukor, Nordashima
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Med Ctr, Dept Pathol, Batu 9 Cheras 56000, MalaysiaUniv Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, Malaysia
Abd Shukor, Nordashima
;
Pauzi, Suria Hayati Md
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Med Ctr, Dept Pathol, Batu 9 Cheras 56000, MalaysiaUniv Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Artificial Intelligence Technol, Pattern Recognit Res Grp, Bangi 43600, Malaysia