Insight into telomere regulation: road to discovery and intervention in plasma drug-protein targets

被引:2
作者
Ding, Kaixi [1 ]
Zhangwang, Juejue [1 ,2 ]
Lei, Ming [2 ]
Xiong, Chunping [2 ]
机构
[1] Chengdu Univ Tradit Chinese Med, Sch Clin Med, Chengdu 610075, Peoples R China
[2] Hosp Chengdu Univ Tradit Chinese Med, Chengdu 610075, Peoples R China
关键词
Telomere length; Protein expression regulatory loci; Mendelian randomization; Target proteins; Causal associations; TRANSFERASE OMEGA 1; LENGTH; CANCER; AGE; ASSOCIATION; DYSFUNCTION; INHIBITION; EXPRESSION; RESISTANCE; ASPIRIN;
D O I
10.1186/s12864-024-10116-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Telomere length is a critical metric linked to aging, health, and disease. Currently, the exploration of target proteins related to telomere length is usually limited to the context of aging and specific diseases, which limits the discovery of more relevant drug targets. This study integrated large-scale plasma cis-pQTLs data and telomere length GWAS datasets. We used Mendelian randomization(MR) to identify drug target proteins for telomere length, providing essential clues for future precision therapy and targeted drug development. Methods Using plasma cis-pQTLs data from a previous GWAS study (3,606 Pqtls associated with 2,656 proteins) and a GWAS dataset of telomere length (sample size: 472,174; GWAS ID: ieu-b-4879) from UK Biobank, using MR, external validation, and reverse causality testing, we identified essential drug target proteins for telomere length. We also performed co-localization, Phenome-wide association studies and enrichment analysis, protein-protein interaction network construction, search for existing intervening drugs, and potential drug/compound prediction for these critical targets to strengthen and expand our findings. Results After Bonferron correction (p < 0.05/734), RPN1 (OR: 0.96; 95%CI: (0.95, 0.97)), GDI2 (OR: 0.94; 95%CI: (0.92, 0.96)), NT5C (OR: 0.97; 95%CI: (0.95, 0.98)) had a significant negative causal association with telomere length; TYRO3 (OR: 1.11; 95%CI: (1.09, 1.15)) had a significant positive causal association with telomere length. GDI2 shared the same genetic variants with telomere length (coloc.abf-PPH 4 > 0.8). Conclusion Genetically determined plasma RPN1, GDI2, NT5C, and TYRO3 have significant causal effects on telomere length and can potentially be drug targets. Further exploration of the role and mechanism of these proteins/genes in regulating telomere length is needed.
引用
收藏
页数:15
相关论文
共 63 条
[11]   Determinants of telomere length across human tissues [J].
Demanelis, Kathryn ;
Jasmine, Farzana ;
Chen, Lin S. ;
Chernoff, Meytal ;
Tong, Lin ;
Delgado, Dayana ;
Zhang, Chenan ;
Shinkle, Justin ;
Sabarinathan, Mekala ;
Lin, Hannah ;
Ramirez, Eduardo ;
Oliva, Meritxell ;
Kim-Hellmuth, Sarah ;
Stranger, Barbara E. ;
Lai, Tsung-Po ;
Aviv, Abraham ;
Ardlie, Kristin G. ;
Aguet, Francois ;
Ahsan, Habibul ;
Doherty, Jennifer A. ;
Kibriya, Muhammad G. ;
Pierce, Brandon L. .
SCIENCE, 2020, 369 (6509) :1333-+
[12]   An analysis of proteogenomics and how and when transcriptome-informed reduction of protein databases can enhance eukaryotic proteomics [J].
Fancello, Laura ;
Burger, Thomas .
GENOME BIOLOGY, 2022, 23 (01)
[13]   Large-scale integration of the plasma proteome with genetics and disease [J].
Ferkingstad, Egil ;
Sulem, Patrick ;
Atlason, Bjarni A. ;
Sveinbjornsson, Gardar ;
Magnusson, Magnus I. ;
Styrmisdottir, Edda L. ;
Gunnarsdottir, Kristbjorg ;
Helgason, Agnar ;
Oddsson, Asmundur ;
Halldorsson, Bjarni V. ;
Jensson, Brynjar O. ;
Zink, Florian ;
Halldorsson, Gisli H. ;
Masson, Gisli ;
Arnadottir, Gudny A. ;
Katrinardottir, Hildigunnur ;
Juliusson, Kristinn ;
Magnusson, Magnus K. ;
Magnusson, Olafur Th. ;
Fridriksdottir, Run ;
Saevarsdottir, Saedis ;
Gudjonsson, Sigurjon A. ;
Stacey, Simon N. ;
Rognvaldsson, Solvi ;
Eiriksdottir, Thjodbjorg ;
Olafsdottir, Thorunn A. ;
Steinthorsdottir, Valgerdur ;
Tragante, Vinicius ;
Ulfarsson, Magnus O. ;
Stefansson, Hreinn ;
Jonsdottir, Ingileif ;
Holm, Hilma ;
Rafnar, Thorunn ;
Melsted, Pall ;
Saemundsdottir, Jona ;
Norddahl, Gudmundur L. ;
Lund, Sigrun H. ;
Gudbjartsson, Daniel F. ;
Thorsteinsdottir, Unnur ;
Stefansson, Kari .
NATURE GENETICS, 2021, 53 (12) :1712-+
[14]   Effectors of mammalian telomere dysfunction: a comparative transcriptome analysis using mouse models [J].
Franco, S ;
Canela, A ;
Klatt, P ;
Blasco, MA .
CARCINOGENESIS, 2005, 26 (09) :1613-1626
[15]   Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy [J].
Friesner, RA ;
Banks, JL ;
Murphy, RB ;
Halgren, TA ;
Klicic, JJ ;
Mainz, DT ;
Repasky, MP ;
Knoll, EH ;
Shelley, M ;
Perry, JK ;
Shaw, DE ;
Francis, P ;
Shenkin, PS .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (07) :1739-1749
[16]  
Gabler L, 2021, NEURO-ONCOLOGY, V23, P33, DOI 10.1093/neuonc/noab196.130
[17]  
Gaudet P, 2017, METHODS MOL BIOL, V1446, P25, DOI 10.1007/978-1-4939-3743-1_3
[18]   Telomere Length and Male Fertility [J].
Gentiluomo, Manuel ;
Luddi, Alice ;
Cingolani, Annapaola ;
Fornili, Marco ;
Governini, Laura ;
Lucenteforte, Ersilia ;
Baglietto, Laura ;
Piomboni, Paola ;
Campa, Daniele .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (08)
[19]  
Han Sen, 2021, Zhongguo Fei Ai Za Zhi, V24, P25, DOI 10.3779/j.issn.1009-3419.2020.102.45
[20]   The effects of aspirin and N-3 fatty acids on telomerase activity in adults with diabetes mellitus [J].
Holub, Ashley ;
Mousa, Shaker ;
Abdolahi, Amir ;
Godugu, Kavitha ;
Tu, Xin M. ;
Brenna, J. Thomas ;
Block, Robert C. .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2020, 30 (10) :1795-1799