TreeDetector: Using Deep Learning for the Localization and Reconstruction of Urban Trees from High-Resolution Remote Sensing Images

被引:1
|
作者
Gong, Haoyu [1 ]
Sun, Qian [2 ]
Fang, Chenrong [1 ]
Sun, Le [2 ]
Su, Ran [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300072, Peoples R China
[2] Nanjing Univ Informat Sci Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
tree location; shape analysis; procedural generation; object detection; HEIGHT; CROWNS;
D O I
10.3390/rs16030524
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
There have been considerable efforts in generating tree crown maps from satellite images. However, tree localization in urban environments using satellite imagery remains a challenging task. One of the difficulties in complex urban tree detection tasks lies in the segmentation of dense tree crowns. Currently, methods based on semantic segmentation algorithms have made significant progress. We propose to split the tree localization problem into two parts, dense clusters and single trees, and combine the target detection method with a procedural generation method based on planting rules for the complex urban tree detection task, which improves the accuracy of single tree detection. Specifically, we propose a two-stage urban tree localization pipeline that leverages deep learning and planting strategy algorithms along with region discrimination methods. This approach ensures the precise localization of individual trees while also facilitating distribution inference within dense tree canopies. Additionally, our method estimates the radius and height of trees, which provides significant advantages for three-dimensional reconstruction tasks from remote sensing images. We compare our results with other existing methods, achieving an 82.3% accuracy in individual tree localization. This method can be seamlessly integrated with the three-dimensional reconstruction of urban trees. We visualized the three-dimensional reconstruction of urban trees generated by this method, which demonstrates the diversity of tree heights and provides a more realistic solution for tree distribution generation.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Unsupervised Deep Feature Learning for Urban Village Detection from High-Resolution Remote Sensing Images
    Li, Yansheng
    Huang, Xin
    Liu, Hui
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2017, 83 (08): : 567 - 579
  • [2] Deep Learning for Building Extraction from High-Resolution Remote Sensing Images
    Norelyaqine, Abderrahim
    Saadane, Abderrahim
    ADVANCED TECHNOLOGIES FOR HUMANITY, 2022, 110 : 116 - 128
  • [3] Large-Scale Oil Palm Trees Detection from High-Resolution Remote Sensing Images Using Deep Learning
    Wibowo, Hery
    Sitanggang, Imas Sukaesih
    Mushthofa, Mushthofa
    Adrianto, Hari Agung
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (03)
  • [4] Oil palm plantation mapping from high-resolution remote sensing images using deep learning
    Dong, Runmin
    Li, Weijia
    Fu, Haohuan
    Gan, Lin
    Yu, Le
    Zheng, Juepeng
    Xia, Maocai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (05) : 2022 - 2046
  • [5] Nationwide urban tree canopy mapping and coverage assessment in Brazil from high-resolution remote sensing images using deep learning
    Guo, Jianhua
    Xu, Qingsong
    Zeng, Yue
    Liu, Zhiheng
    Zhu, Xiao Xiang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 198 : 1 - 15
  • [6] Urban origins/destinations from high-resolution remote sensing images
    Wang, Hao
    Trauth, Kathleen M.
    JOURNAL OF URBAN PLANNING AND DEVELOPMENT, 2006, 132 (02) : 104 - 111
  • [7] Stripe Noise Detection of High-Resolution Remote Sensing Images Using Deep Learning Method
    Li, Binbo
    Zhou, Ying
    Xie, Donghai
    Zheng, Lijuan
    Wu, Yu
    Yue, Jiabao
    Jiang, Shaowei
    REMOTE SENSING, 2022, 14 (04)
  • [8] A Survey of Deep Learning Road Extraction Algorithms Using High-Resolution Remote Sensing Images
    Mo, Shaoyi
    Shi, Yufeng
    Yuan, Qi
    Li, Mingyue
    SENSORS, 2024, 24 (05)
  • [9] Building Extraction from High-Resolution Remote-Sensing Images Based on Deep Learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    ELEKTROTEHNISKI VESTNIK, 2020, 87 (05): : 281 - 286
  • [10] Building extraction from high-resolution remote-sensing images based on deep learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    Elektrotehniski Vestnik/Electrotechnical Review, 2020, 87 (05): : 281 - 286