Tailoring giant quantum transport anisotropy in nanoporous graphenes under electrostatic disorder

被引:2
作者
Alcon, Isaac [1 ,2 ]
Cummings, Aron W. [1 ,2 ]
Roche, Stephan [1 ,2 ,3 ]
机构
[1] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Barcelona 08193, Spain
[2] BIST, Campus UAB, Barcelona 08193, Spain
[3] Inst Catalana Recerca & Estudis Avancats, ICREA, Barcelona 08070, Spain
关键词
Graphene - Nanoribbons - Quantum chemistry;
D O I
10.1039/d3nh00416c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
During the last 15 years bottom-up on-surface synthesis has been demonstrated as an efficient way to synthesize carbon nanostructures with atomic precision, opening the door to unprecedented electronic control at the nanoscale. Nanoporous graphenes (NPGs) fabricated as two-dimensional arrays of graphene nanoribbons (GNRs) represent one of the key recent breakthroughs in the field. NPGs interestingly display in-plane transport anisotropy of charge carriers, and such anisotropy was shown to be tunable by modulating quantum interference. Herein, using large-scale quantum transport simulations, we show that electrical anisotropy in NPGs is not only resilient to disorder but can further be massively enhanced by its presence. This outcome paves the way to systematic engineering of quantum transport in NPGs as a novel concept for efficient quantum devices and architectures. We demonstrate, via large-scale quantum transport simulations, that quantum interference engineering permits realizing giant transport anisotropy in nanoporous graphenes under the presence of electrostatic disorder.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Electrochemical Control of Charge Current Flow in Nanoporous Graphene [J].
Alcon, Isaac ;
Calogero, Gaetano ;
Papior, Nick ;
Brandbyge, Mads .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (40)
[2]   All-carbon approach to inducing electrical and optical anisotropy in graphene [J].
Antidormi, Aleandro ;
Cummings, Aron W. .
AIP ADVANCES, 2021, 11 (11)
[3]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[4]   Quantum Interference Engineering of Nanoporous Graphene for Carbon Nanocircuitry [J].
Calogero, Gaetano ;
Alcon, Isaac ;
Papior, Nick ;
Jauho, Antti-Pekka ;
Brandbyge, Mads .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (33) :13081-13088
[5]   Electron Transport in Nanoporous Graphene: Probing the Talbot Effect [J].
Calogero, Gaetano ;
Papior, Nick R. ;
Kretz, Bernhard ;
Garcia-Lekue, Aran ;
Frederiksen, Thomas ;
Brandbyge, Mads .
NANO LETTERS, 2019, 19 (01) :576-581
[6]   Graphene nanoribbons: fabrication, properties and devices [J].
Celis, A. ;
Nair, M. N. ;
Taleb-Ibrahimi, A. ;
Conrad, E. H. ;
Berger, C. ;
de Heer, W. A. ;
Tejeda, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (14)
[7]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[8]   Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices [J].
Chen, Zongping ;
Narita, Akimitsu ;
Muellen, Klaus .
ADVANCED MATERIALS, 2020, 32 (45)
[9]   Tailoring topological order and π-conjugation to engineer quasi-metallic polymers [J].
Cirera, Borja ;
Sanchez-Grande, Ana ;
de la Torre, Bruno ;
Santos, Jose ;
Edalatmanesh, Shayan ;
Rodriguez-Sanchez, Eider ;
Lauwaet, Koen ;
Mallada, Benjamin ;
Zboril, Radek ;
Miranda, Rodolfo ;
Groening, Oliver ;
Jelinek, Pavel ;
Martin, Nazario ;
Ecija, David .
NATURE NANOTECHNOLOGY, 2020, 15 (06) :437-+
[10]   Spin dynamics and relaxation in graphene dictated by electron-hole puddles [J].
Dinh Van Tuan ;
Ortmann, Frank ;
Cummings, Aron W. ;
Soriano, David ;
Roche, Stephan .
SCIENTIFIC REPORTS, 2016, 6