Fundamental Drivers of Electrochemical Barriers

被引:6
作者
Chen, Xi [1 ]
Kastlunger, Georg [2 ]
Peterson, Andrew A. [1 ]
机构
[1] Brown Univ, Sch Engn, Providence, RI 02912 USA
[2] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会;
关键词
ELECTROLYTIC HYDROGEN EVOLUTION; BATTERY ELECTRIC VEHICLES; WORK FUNCTION; SCALING RELATIONS; OXYGEN REDUCTION; ADSORPTION; SIMULATION; KINETICS; ELEMENTS; DENSITY;
D O I
10.1103/PhysRevLett.131.238003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find that ion creation and destruction dominate the behavior of electrochemical reaction barriers, through grand-canonical electronic structure calculations of proton deposition on transition metal surfaces. We show that barriers respond to potential in a nonlinear manner and trace this to the continuous degree of electron transfer as an ion is created or destroyed. This explains both Marcus-like curvature and Hammond-like shifts. Across materials, we find the barrier energy to be driven primarily by the charge presented on the surface, which, in turn, is dictated by the native work function, a fundamentally different driving force than in nonelectrochemical systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Modeling Potential-Dependent Electrochemical Activation Barriers: Revisiting the Alkaline Hydrogen Evolution Reaction
    Li, Jiang
    Stenlid, Joakim Halldin
    Ludwig, Thomas
    Lamoureux, Philomena Schlexer
    Abild-Pedersen, Frank
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (46) : 19341 - 19355
  • [22] Covalent Organic Framework (COF) Derived Ni-N-C Catalysts for Electrochemical CO2 Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites
    Li, Changxia
    Ju, Wen
    Vijay, Sudarshan
    Timoshenko, Janis
    Mou, Kaiwen
    Cullen, David A.
    Yang, Jin
    Wang, Xingli
    Pachfule, Pradip
    Bruckner, Sven
    Jeon, Hyo Sang
    Haase, Felix T.
    Tsang, Sze-Chun
    Rettenmaier, Clara
    Chan, Karen
    Roldan Cuenya, Beatriz
    Thomas, Arne
    Strasser, Peter
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (15)
  • [23] Imaging decorated platinum single crystal electrodes by scanning electrochemical microscopy
    Sanchez-Sanchez, C. M.
    Souza-Garcia, J.
    Saez, A.
    Montiel, V.
    Herrero, E.
    Aldaz, A.
    Feliu, J. M.
    ELECTROCHIMICA ACTA, 2011, 56 (28) : 10708 - 10712
  • [24] Using Time-Resolved Electrochemical Patterning to Gain Fundamental Insight into Aryl-Radical Surface Modification
    Torbensen, Kristian
    Malmos, Kristoffer
    Kanoufi, Frederic
    Combellas, Catherine
    Pedersen, Steen U.
    Daasbjerg, Kim
    CHEMPHYSCHEM, 2012, 13 (14) : 3303 - 3307
  • [25] The influence of electrochemical annealing in CO saturated solution on the catalytic activity of Pt nanoparticles
    Mayrhofer, Karl J. J.
    Hanzlik, Marianne
    Arenz, Matthias
    ELECTROCHIMICA ACTA, 2009, 54 (22) : 5018 - 5022
  • [26] Mechanistic modeling of electrochemical charge transfer in HT-PEM fuel cells
    Unnikrishnan, Anusree
    Rajalakshmi, N.
    Janardhanan, Vinod M.
    ELECTROCHIMICA ACTA, 2018, 261 : 436 - 444
  • [27] A fundamental model of platinum impregnation onto alumina
    Spieker, WA
    Regalbuto, JR
    CHEMICAL ENGINEERING SCIENCE, 2001, 56 (11) : 3491 - 3504
  • [28] A fundamental approach in liquid phase adsorption kinetics
    Stavropoulos, G. G.
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (10) : 2123 - 2126
  • [29] An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces
    Ding, Mengning
    He, Qiyuan
    Wang, Gongming
    Cheng, Hung-Chieh
    Huang, Yu
    Duan, Xiangfeng
    NATURE COMMUNICATIONS, 2015, 6
  • [30] Plain fundamentals of Fundamental Planes: analytics and algorithms
    Sheth, Ravi K.
    Bernardi, Mariangela
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 422 (03) : 1825 - 1834