Deep neural networks predict class I major histocompatibility complex epitope presentation and transfer learn neoepitope immunogenicity

被引:30
作者
Albert, Benjamin Alexander [1 ,2 ]
Yang, Yunxiao [1 ,2 ]
Shao, Xiaoshan M. M. [1 ]
Singh, Dipika [3 ,4 ]
Smith, Kellie N. N. [3 ,4 ]
Anagnostou, Valsamo [3 ,4 ]
Karchin, Rachel [1 ,2 ,3 ,5 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Sch Med, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Bloomberg Kimmel Inst Canc Immunotherapy, Sch Med, Baltimore, MD USA
[5] Johns Hopkins Univ, Inst Computat Med, Baltimore, MD 21218 USA
基金
美国国家卫生研究院;
关键词
MHC CLASS-I; IMMUNE CHECKPOINT BLOCKADE; HIDDEN MARKOV-MODELS; PEPTIDES; BINDING;
D O I
10.1038/s42256-023-00694-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Out of the large number of neoepitopes, few elicit an immune response from the major histocompatibility complex. To predict which neoepitopes can be effective, Albert and colleagues present a method based on long short-term memory ensembles and transfer learning from immunogenicity assays. Identifying neoepitopes that elicit an adaptive immune response is a major bottleneck to developing personalized cancer vaccines. Experimental validation of candidate neoepitopes is extremely resource intensive and the vast majority of candidates are non-immunogenic, creating a needle-in-a-haystack problem. Here we address this challenge, presenting computational methods for predicting class I major histocompatibility complex (MHC-I) epitopes and identifying immunogenic neoepitopes with improved precision. The BigMHC method comprises an ensemble of seven pan-allelic deep neural networks trained on peptide-MHC eluted ligand data from mass spectrometry assays and transfer learned on data from assays of antigen-specific immune response. Compared with four state-of-the-art classifiers, BigMHC significantly improves the prediction of epitope presentation on a test set of 45,409 MHC ligands among 900,592 random negatives (area under the receiver operating characteristic = 0.9733; area under the precision-recall curve = 0.8779). After transfer learning on immunogenicity data, BigMHC yields significantly higher precision than seven state-of-the-art models in identifying immunogenic neoepitopes, making BigMHC effective in clinical settings.
引用
收藏
页码:861 / +
页数:20
相关论文
共 26 条
  • [21] Diverse Peptide Presentation of Rhesus Macaque Major Histocompatibility Complex Class I Mamu-A*02 Revealed by Two Peptide Complex Structures and Insights into Immune Escape of Simian Immunodeficiency Virus
    Liu, Jun
    Dai, Lianpan
    Qi, Jianxun
    Gao, Feng
    Feng, Youjun
    Liu, Wenjun
    Yan, Jinghua
    Gao, George F.
    JOURNAL OF VIROLOGY, 2011, 85 (14) : 7372 - 7383
  • [22] Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways
    Castellino, F
    Boucher, PE
    Eichelberg, K
    Mayhew, M
    Rothman, JE
    Houghton, AN
    Germain, RN
    JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 191 (11) : 1957 - 1964
  • [23] Targeting Lysine-Specific Demethylase 1 Rescues Major Histocompatibility Complex Class I Antigen Presentation and Overcomes Programmed Death- Ligand 1 Blockade Resistance in SCLC
    Nguyen, Evelyn M.
    Taniguchi, Hirokazu
    Chan, Joseph M.
    Zhan, Yingqian A.
    Chen, Xiaoping
    Qiu, Juan
    de Stanchina, Elisa
    Allaj, Viola
    Shah, Nisargbhai S.
    Uddin, Fathema
    Manoj, Parvathy
    Liu, Michael
    Cai, Sheng F.
    Levine, Ross
    Quintanal-Villalonga, Alvaro
    Sen, Triparna
    Chow, Andrew
    Rudin, Charles M.
    JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (08) : 1014 - 1031
  • [24] Probiotic lactic acid bacteria promote anti-tumor immunity through enhanced major histocompatibility complex class I-restricted antigen presentation machinery in dendritic cells
    Saito, Suguru
    Okuno, Alato
    Peng, Zhenzi
    Cao, Duo-Yao
    Tsuji, Noriko M.
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [25] Crystal Structure of Swine Major Histocompatibility Complex Class I SLA-1*0401 and Identification of 2009 Pandemic Swine-Origin Influenza A H1N1 Virus Cytotoxic T Lymphocyte Epitope Peptides
    Zhang, Nianzhi
    Qi, Jianxun
    Feng, Sijia
    Gao, Feng
    Liu, Jun
    Pan, Xiaocheng
    Chen, Rong
    Li, Qirun
    Chen, Zhaosan
    Li, Xiaoying
    Xia, Chun
    Gao, George F.
    JOURNAL OF VIROLOGY, 2011, 85 (22) : 11709 - 11724
  • [26] Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance
    Bonifaz, L
    Bonnyay, D
    Mahnke, K
    Rivera, M
    Nussenzweig, MC
    Steinman, RM
    JOURNAL OF EXPERIMENTAL MEDICINE, 2002, 196 (12) : 1627 - 1638