Deep neural networks predict class I major histocompatibility complex epitope presentation and transfer learn neoepitope immunogenicity

被引:30
作者
Albert, Benjamin Alexander [1 ,2 ]
Yang, Yunxiao [1 ,2 ]
Shao, Xiaoshan M. M. [1 ]
Singh, Dipika [3 ,4 ]
Smith, Kellie N. N. [3 ,4 ]
Anagnostou, Valsamo [3 ,4 ]
Karchin, Rachel [1 ,2 ,3 ,5 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Sch Med, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Bloomberg Kimmel Inst Canc Immunotherapy, Sch Med, Baltimore, MD USA
[5] Johns Hopkins Univ, Inst Computat Med, Baltimore, MD 21218 USA
基金
美国国家卫生研究院;
关键词
MHC CLASS-I; IMMUNE CHECKPOINT BLOCKADE; HIDDEN MARKOV-MODELS; PEPTIDES; BINDING;
D O I
10.1038/s42256-023-00694-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Out of the large number of neoepitopes, few elicit an immune response from the major histocompatibility complex. To predict which neoepitopes can be effective, Albert and colleagues present a method based on long short-term memory ensembles and transfer learning from immunogenicity assays. Identifying neoepitopes that elicit an adaptive immune response is a major bottleneck to developing personalized cancer vaccines. Experimental validation of candidate neoepitopes is extremely resource intensive and the vast majority of candidates are non-immunogenic, creating a needle-in-a-haystack problem. Here we address this challenge, presenting computational methods for predicting class I major histocompatibility complex (MHC-I) epitopes and identifying immunogenic neoepitopes with improved precision. The BigMHC method comprises an ensemble of seven pan-allelic deep neural networks trained on peptide-MHC eluted ligand data from mass spectrometry assays and transfer learned on data from assays of antigen-specific immune response. Compared with four state-of-the-art classifiers, BigMHC significantly improves the prediction of epitope presentation on a test set of 45,409 MHC ligands among 900,592 random negatives (area under the receiver operating characteristic = 0.9733; area under the precision-recall curve = 0.8779). After transfer learning on immunogenicity data, BigMHC yields significantly higher precision than seven state-of-the-art models in identifying immunogenic neoepitopes, making BigMHC effective in clinical settings.
引用
收藏
页码:861 / +
页数:20
相关论文
共 26 条
  • [1] Major histocompatibility complex class I binding predictions as a tool in epitope discovery
    Lundegaard, Claus
    Lund, Ole
    Buus, Soren
    Nielsen, Morten
    IMMUNOLOGY, 2010, 130 (03) : 309 - 318
  • [2] What is the role of alternate splicing in antigen presentation by major histocompatibility complex class I molecules?
    Belicha-Villanueva, Alan
    Blickwedehl, Jennifer
    McEvoy, Sarah
    Golding, Michelle
    Gollnick, Sandra O.
    Bangia, Naveen
    IMMUNOLOGIC RESEARCH, 2010, 46 (1-3) : 32 - 44
  • [3] Recurrent bladder cancer in aging societies: Importance of major histocompatibility complex class I antigen presentation
    Wieczorek, Edyta
    Garstka, Malgorzata A.
    INTERNATIONAL JOURNAL OF CANCER, 2021, 148 (08) : 1808 - 1820
  • [4] Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection
    Cram, Erik D.
    Simmons, Ryan S.
    Palmer, Amy L.
    Hildebrand, William H.
    Rockey, Daniel D.
    Dolan, Brian P.
    INFECTION AND IMMUNITY, 2016, 84 (02) : 480 - 490
  • [5] Ethanol Metabolism Alters Major Histocompatibility Complex Class I-Restricted Antigen Presentation in Liver Cells
    Osna, Natalia A.
    White, Ronda L.
    Thiele, Geoffrey M.
    Donohue, Terrence M., Jr.
    HEPATOLOGY, 2009, 49 (04) : 1308 - 1315
  • [6] A case of primary immunodeficiency due to a defect of the major histocompatibility gene complex class I processing and presentation pathway
    Teisserenc, H
    Schmitt, W
    Blake, N
    Dunbar, R
    Gadola, S
    Gross, WL
    Exley, A
    Cerundolo, V
    IMMUNOLOGY LETTERS, 1997, 57 (1-3) : 183 - 187
  • [7] Cytomegalovirus infection and interferon-γ modulate major histocompatibility complex class I expression on neural stem cells
    Maxim C. -J. Cheeran
    Zibing Jiang
    Shuxian Hu
    Hsiao T. Ni
    Joseph M. Palmquist
    James R. Lokensgard
    Journal of NeuroVirology, 2008, 14 : 437 - 447
  • [8] Constraints within major histocompatibility complex class I restricted peptides: Presentation and consequences for T-cell recognition
    Theodossis, Alex
    Guillonneau, Carole
    Welland, Andrew
    Ely, Lauren K.
    Clements, Craig S.
    Williamson, Nicholas A.
    Webb, Andrew I.
    Wilce, Jacqueline A.
    Mulder, Roger J.
    Dunstone, Michelle A.
    Doherty, Peter C.
    McCluskey, James
    Purcell, Anthony W.
    Turner, Stephen J.
    Rossjohn, Jamie
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (12) : 5534 - 5539
  • [9] Cytomegalovirus infection and interferon- modulate major histocompatibility complex class I expression on neural stem cells
    Cheeran, Maxim C-J
    Jiang, Zibing
    Hu, Shuxian
    Ni, Hsiao T.
    Palmquist, Joseph M.
    Lokensgard, James R.
    JOURNAL OF NEUROVIROLOGY, 2008, 14 (05) : 437 - 447
  • [10] Peptide-Major Histocompatibility Complex Class I Binding Prediction Based on Deep Learning With Novel Feature
    Zhao, Tianyi
    Cheng, Liang
    Zang, Tianyi
    Hu, Yang
    FRONTIERS IN GENETICS, 2019, 10