The enhancement of energy storage performance in high-entropy ceramic

被引:18
|
作者
Sun, Xiaofan [1 ]
Xu, Cuiping [1 ]
Ji, Peiqi [1 ]
Tang, Zheng [1 ]
Jiao, Shulin [1 ]
Lu, Yanzhou [1 ]
Zhao, Min [1 ]
Cai, Hong-Ling [1 ]
Wu, X. S. [1 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Lab Solid State Microstruct, Nanjing 210093, Peoples R China
关键词
High entropy ceramics; Relaxor ferroelectric; Energy storage; Phase diagram; LEAD-FREE CERAMICS; FERROELECTRIC PROPERTIES; RELAXOR FERROELECTRICS; TEMPERATURE; DENSITY; CAPACITORS; VISCOSITY; POLYMER; ORDER; FILMS;
D O I
10.1016/j.ceramint.2023.02.070
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dielectric capacitors are used in pulsed power devices due to their high-power density. The energy storage density and efficiency need to be further improved to widen their applications. This work investigates the energy storage of high entropy ceramic (Pb0.25Ba0.25Ca0.25Sr0.25)TiO3 synthesized by the solid-state method. The Bi (Mg2/3Nb1/3)O3 (BMN) is introduced to enhance its energy storage performance. The introduction of BMN from x = 0 to 0.15 reduces the grain size from 5.9 mu m to 245 nm, increases the band gap from 2.98 to 3.05 eV, and improves the differences between saturation and remnant polarization from 11.85 to 14.60 mu C/cm2. The phase diagram of this system was constructed by dielectric properties analysis to understand the effect of Bi(Mg2/3Nb1/ 3)O3 in the energy storage performance. The optimal energy density of 5.58 J/cm3 and efficiency of 89.4% was achieved in 0.9PBCST-0.1BMN which can be promising candidates for application in dielectric energy storage.
引用
收藏
页码:17091 / 17098
页数:8
相关论文
共 50 条
  • [21] Multi-symmetry high-entropy relaxor ferroelectric with giant capacitive energy storage
    Guo, Jian
    Yu, Huifen
    Ren, Yifeng
    Qi, He
    Yang, Xinrui
    Deng, Yu
    Zhang, Shan-Tao
    Chen, Jun
    NANO ENERGY, 2023, 112
  • [22] Optimized energy storage performances via high-entropy design in KNN-based relaxor ferroelectric ceramics
    Wang, Minquan
    Lin, Ying
    Zheng, Binglong
    Yuan, Qibin
    Yang, Haibo
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [23] Enabling high energy storage performance in PVDF-based nanocomposites filled with high-entropy oxide nanofibers
    Jing, Lu
    Li, Weili
    Gao, Chang
    Li, Menglu
    Fei, Weidong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 230
  • [24] Optimization of energy storage performance in NaNbO3-Based high entropy ceramics via MnO doping
    Guo, Yaqin
    Jain, Aditya
    Zhou, Hengzhi
    Wang, Yingang
    CERAMICS INTERNATIONAL, 2024, 50 (23) : 50038 - 50045
  • [25] Significant enhancement of comprehensive energy storage performance in BaTiO3-based ceramics through high-entropy design
    Gao, Pan
    Zhang, Rongjie
    Liu, Chang
    Wang, Hanjun
    Geng, Wenjing
    Zhang, Jing
    Sun, Zixiong
    Tian, Ye
    Ren, Xincheng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (12)
  • [26] High-entropy engineered BaTiO3-based ceramic capacitors with greatly enhanced high-temperature energy storage performance
    Kong, Xi
    Yang, Letao
    Meng, Fanqi
    Zhang, Tao
    Zhang, Hejin
    Lin, Yuan-Hua
    Huang, Houbing
    Zhang, Shujun
    Guo, Jinming
    Nan, Ce-Wen
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [27] Equimolar high-entropy for excellent energy storage performance in Bi0.5Na0.5TiO3-based ceramics
    Wang, Changyuan
    Cao, Wenjun
    Liang, Cen
    Zhao, Hanyu
    Wang, Chunchang
    ENERGY STORAGE MATERIALS, 2024, 70
  • [28] Combustion synthesis of high-performance high-entropy dielectric ceramics for energy storage applications
    Zuo, Chengyang
    Yang, Shilin
    Cao, Zhiqin
    Jie, Wenjing
    Wei, Xianhua
    CERAMICS INTERNATIONAL, 2023, 49 (15) : 25486 - 25494
  • [29] Excellent Energy Storage Performance of Perovskite High-Entropy Oxide-Modified (Bi0.5Na0.5)TiO3-Based Ceramics
    Zhang, Xue
    Zhang, Fan
    Niu, Yiwen
    Zhang, Zhiqiang
    Lei, Xueqiong
    Wang, Zhan Jie
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (06) : 4698 - 4708
  • [30] Dielectric temperature stability and energy storage performance of NBT-based ceramics by introducing high-entropy oxide
    Zhou, Shiyu
    Pu, Yongping
    Zhao, Xinyi
    Tao, Ouyang
    Ji, Jiamin
    Zhang, Qianwen
    Zhang, Canpeng
    Sun, Shikuan
    Sun, Rong
    Li, Junjie
    Wang, Dawei
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (07) : 4796 - 4804