WANDERING DOMAINS ARISING FROM LAVAURS MAPS WITH SIEGEL DISKS

被引:4
作者
Astorg, Matthieu [1 ]
Thaler, Luka Boc [2 ,3 ]
Peters, Han [4 ]
机构
[1] Univ Orleans, Inst Denis Poisson, Collegium Sci & Tech, Orleans, France
[2] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Univ Amsterdam, Korteweg Vries Inst Math, Amsterdam, Netherlands
关键词
Fatou set; holomorphic dynamics; parabolic implosion; polynomial mappings; skew-products; wandering Fatou components; parabolic curves; nonautonomous dynamics; POLYNOMIAL SKEW-PRODUCTS; DYNAMICS;
D O I
10.2140/apde.2023.16.35
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first example of polynomial maps with wandering domains was constructed in 2016 by the first and last authors, together with Buff, Dujardin and Raissy. In this paper, we construct a second example with different dynamics, using a Lavaurs map with a Siegel disk instead of an attracting fixed point. We prove a general necessary and sufficient condition for the existence of a trapping domain for nonautonomous compositions of maps converging parabolically towards a Siegel-type limit map. Constructing a skew -product satisfying this condition requires precise estimates on the convergence to the Lavaurs map, which we obtain by a new approach. We also give a self-contained construction of parabolic curves, which are integral to this new method.
引用
收藏
页码:35 / 88
页数:56
相关论文
共 20 条
[1]  
[Anonymous], 1971, Trans. Moscow Math. Soc.
[2]   A two-dimensional polynomial mapping with a wandering Fatou component [J].
Astorg, Matthieu ;
Buff, Xavier ;
Dujardin, Romain ;
Peters, Han ;
Raissy, Jasmin .
ANNALS OF MATHEMATICS, 2016, 184 (01) :263-313
[3]   DISTRIBUTION OF POLYNOMIALS WITH CYCLES OF A GIVEN MULTIPLIER [J].
Bassanelli, Giovanni ;
Berteloot, Francois .
NAGOYA MATHEMATICAL JOURNAL, 2011, 201 :23-43
[4]   Semi-parabolic Bifurcations in Complex Dimension Two [J].
Bedford, Eric ;
Smillie, John ;
Ueda, Tetsuo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 350 (01) :1-29
[5]   Dynamics of one-resonant biholomorphisms [J].
Bracci, Filippo ;
Zaitsev, Dmitri .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :179-200
[6]  
Branner B., 2014, CAMBRIDGE STUD ADV M, V141
[7]  
BRUNO A. D., 1972, Trans. Mosc. Math. Soc, V26, P199
[8]   Analytic transformations of (Cp,0) tangent to the identity [J].
Hakim, M .
DUKE MATHEMATICAL JOURNAL, 1998, 92 (02) :403-428
[9]   Non-wandering Fatou Components for Strongly Attracting Polynomial Skew Products [J].
Ji, Zhuchao .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) :124-152
[10]  
Jonsson M, 1999, MATH ANN, V314, P403, DOI 10.1007/s002080050301