Enhancing Cardiac MRI Segmentation via Classifier-Guided Two-Stage Network and All-Slice Information Fusion Transformer

被引:0
作者
Chen, Zihao [1 ,2 ,3 ]
Chen, Xiao [1 ]
Liu, Yikang [1 ]
Chen, Eric Z. [1 ]
Chen, Terrence [1 ]
Sun, Shanhui [1 ]
机构
[1] United Imaging Intelligence, Cambridge, MA 02139 USA
[2] Univ Calif Los Angeles, Los Angeles, CA USA
[3] Cedars Sinai Med Ctr, Los Angeles, CA USA
来源
APPLICATIONS OF MEDICAL ARTIFICIAL INTELLIGENCE, AMAI 2023 | 2024年 / 14313卷
关键词
CMR segmentation; Classifier-guided; Transformer;
D O I
10.1007/978-3-031-47076-9_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cardiac Magnetic Resonance imaging (CMR) is the gold standard for assessing cardiac function. Segmenting the left ventricle (LV), right ventricle (RV), and LV myocardium (MYO) in CMR images is crucial but time-consuming. Deep learning-based segmentation methods have emerged as effective tools for automating this process. However, CMR images present additional challenges due to irregular and varying heart shapes, particularly in basal and apical slices. In this study, we propose a classifier-guided two-stage network with an all-slice fusion transformer to enhance CMR segmentation accuracy, particularly in basal and apical slices. Our method was evaluated on extensive clinical datasets and demonstrated better performance in terms of Dice score compared to previous CNN-based and transformer-based models. Moreover, our method produces visually appealing segmentation shapes resembling human annotations and avoids common issues like holes or fragments in other models' segmentation.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 23 条
[1]   An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Pollefeys, Marc ;
Konukoglu, Ender .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 :111-119
[2]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[3]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[4]   Deep Learning for Cardiac Image Segmentation: A Review [J].
Chen, Chen ;
Qin, Chen ;
Qiu, Huaqi ;
Tarroni, Giacomo ;
Duan, Jinming ;
Bai, Wenjia ;
Rueckert, Daniel .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[5]  
Chen Jieneng, 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.04306
[6]   ToStaGAN: An end-to-end two-stage generative adversarial network for brain tumor segmentation [J].
Ding, Yi ;
Zhang, Chao ;
Cao, Mingsheng ;
Wang, Yilei ;
Chen, Dajiang ;
Zhang, Ning ;
Qin, Zhiguang .
NEUROCOMPUTING, 2021, 462 :141-153
[7]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, 10.48550/arXiv.2010.11929, DOI 10.48550/ARXIV.2010.11929]
[8]   UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation [J].
Gao, Yunhe ;
Zhou, Mu ;
Metaxas, Dimitris N. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 :61-71
[9]   Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images [J].
Hatamizadeh, Ali ;
Nath, Vishwesh ;
Tang, Yucheng ;
Yang, Dong ;
Roth, Holger R. ;
Xu, Daguang .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 :272-284
[10]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+