Imputation of Human Mobility Data for Comprehensive Risk Models

被引:1
|
作者
Kumari, Shashee [1 ]
Bhattacharya, Sakyajit [2 ]
Chatterjee, Arnab [1 ]
Ghose, Avik [2 ]
机构
[1] TCS Res, Delhi, India
[2] TCS Res, Kolkata, W Bengal, India
来源
PROCEEDINGS OF THE 2023 8TH WORKSHOP ON BODY-CENTRIC COMPUTING SYSTEMS, BODYSYS 2023 | 2023年
关键词
Wearable-devices; semantic trajectory; ensemble-classifier; imputation;
D O I
10.1145/3597061.3597260
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Sensor-equipped wearable devices are becoming increasingly popular in the healthcare industry, with some equipped with GPS and Proximity sensors as well. Raw (GPS) trajectories obtained through human-centric systems like body worn senors, and enriched with semantic annotations generate huge actionable insights for downstream domain specific applications like epidemic risk modeling. However, trajectory data suffer from missing data problem owing to various technical as well as behavioral factors. Our paper shows that, for a semantic trajectory dataset and using coarse grain semantic location for both prediction and imputation purposes, a simple ensemble classifier-based model can outperform the existing deep models where trajectory imputation is almost real-time delay.
引用
收藏
页码:19 / 24
页数:6
相关论文
共 50 条
  • [31] Evaluation methodology for deep learning imputation models
    Boursalie, Omar
    Samavi, Reza
    Doyle, Thomas E.
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2022, 247 (22) : 1972 - 1987
  • [32] Cooperative Clustering Missing Data Imputation
    Wan, Daoming
    Razavi-Far, Roozbeh
    Saif, Mehrdad
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 1039 - 1045
  • [33] A Diffusion Model for Traffic Data Imputation
    Lu, Bo
    Miao, Qinghai
    Liu, Yahui
    Tamir, Tariku Sinshaw
    Zhao, Hongxia
    Zhang, Xiqiao
    Lv, Yisheng
    Wang, Fei-Yue
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2025, 12 (03) : 606 - 617
  • [34] A new approach for data editing and imputation
    Delgado-Quintero, Sergio
    Salazar-Gonzalez, Juan-Jose
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2008, 68 (03) : 407 - 428
  • [35] Calibrated random imputation for qualitative data
    Favre, AC
    Matei, A
    Tillé, Y
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (02) : 411 - 425
  • [36] Evaluating the Impact of Missing Data Imputation
    Pantanowitz, Adam
    Marwala, Tshildzi
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2009, 5678 : 577 - 586
  • [37] Imputation and missing indicators for handling missing data in the development and deployment of clinical prediction models: A simulation study
    Sisk, Rose
    Sperrin, Matthew
    Peek, Niels
    van Smeden, Maarten
    Martin, Glen Philip
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (08) : 1461 - 1477
  • [38] Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study
    Shah, Anoop D.
    Bartlett, Jonathan W.
    Carpenter, James
    Nicholas, Owen
    Hemingway, Harry
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (06) : 764 - 774
  • [39] Imputation through finite Gaussian mixture models
    Di Zio, Marco
    Guarnera, Ugo
    Luzi, Orietta
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (11) : 5305 - 5316
  • [40] Genotype imputation in human genomic studies
    Berdnikova, A. A.
    Zorkoltseva, I. V.
    Tsepilov, Y. A.
    Elgaeva, E. E.
    VAVILOVSKII ZHURNAL GENETIKI I SELEKTSII, 2024, 28 (06): : 628 - 639