A narrative review of radiomics and deep learning advances in neuroblastoma: updates and challenges

被引:12
作者
Wang, Haoru [1 ,2 ,3 ]
Chen, Xin [1 ,2 ,3 ]
He, Ling [1 ,2 ,3 ]
机构
[1] Chongqing Med Univ, Childrens Hosp, Dept Radiol, 136 Zhongshan Rd 2, Chongqing 400014, Peoples R China
[2] Natl Clin Res Ctr Child Hlth & Disorders, Key Lab Child Dev & Disorders, Minist Educ, Chongqing, Peoples R China
[3] Chongqing Key Lab Pediat, Chongqing, Peoples R China
关键词
Children; Computed tomography; Deep learning; Magnetic resonance imaging; Neuroblastoma; Positron emission tomography; Radiomics; Review; INTERNATIONAL NEUROBLASTOMA; PATHOLOGY CLASSIFICATION; COMPUTED-TOMOGRAPHY; PEDIATRIC-PATIENTS; 18F-FDG PET/CT; FREE SURVIVAL; CHEMOTHERAPY; ASSOCIATION; PREDICTION; SIGNATURE;
D O I
10.1007/s00247-023-05792-6
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Neuroblastoma is an extremely heterogeneous tumor that commonly occurs in children. The diagnosis and treatment of this tumor pose considerable challenges due to its varied clinical presentations and intricate genetic aberrations. Presently, various imaging modalities, including computed tomography, magnetic resonance imaging, and positron emission tomography, are utilized to assess neuroblastoma. Nevertheless, these conventional imaging modalities have limitations in providing quantitative information for accurate diagnosis and prognosis. Radiomics, an emerging technique, can extract intricate medical imaging information that is imperceptible to the human eye and transform it into quantitative data. In conjunction with deep learning algorithms, radiomics holds great promise in complementing existing imaging modalities. The aim of this review is to showcase the potential of radiomics and deep learning advancements to enhance the diagnostic capabilities of current imaging modalities for neuroblastoma.
引用
收藏
页码:2742 / 2755
页数:14
相关论文
共 50 条
[31]   A deep learning radiomics model for preoperative grading in meningioma [J].
Zhu, Yongbei ;
Man, Chuntao ;
Gong, Lixin ;
Dong, Di ;
Yu, Xinyi ;
Wang, Shuo ;
Fang, Mengjie ;
Wang, Siwen ;
Fang, Xiangming ;
Chen, Xuzhu ;
Tian, Jie .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 116 :128-134
[32]   Radiomics and Radiogenomics with Deep Learning in Neuro-oncology [J].
Patel, Jay ;
Gidwani, Mishka ;
Chang, Ken ;
Kalpathy-Cramer, Jayashree .
MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 :199-211
[33]   Advanced atherosclerosis imaging by CT: Radiomics, machine learning and deep learning [J].
Kolossvary, Marton ;
De Cecco, Carlo N. ;
Feuchtner, Gudrun ;
Maurovich-Horvat, Pal .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2019, 13 (05) :274-280
[34]   Pancreatic ductal adenocarcinoma staging: a narrative review of radiologic techniques and advances [J].
Chu, Linda C. ;
Fishman, Elliot K. .
INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (10) :6052-6063
[35]   Radiomics Analysis in Ovarian Cancer: A Narrative Review [J].
Arezzo, Francesca ;
Loizzi, Vera ;
La Forgia, Daniele ;
Moschetta, Marco ;
Tagliafico, Alberto Stefano ;
Cataldo, Viviana ;
Kawosha, Adam Abdulwakil ;
Venerito, Vincenzo ;
Cazzato, Gerardo ;
Ingravallo, Giuseppe ;
Resta, Leonardo ;
Cicinelli, Ettore ;
Cormio, Gennaro .
APPLIED SCIENCES-BASEL, 2021, 11 (17)
[36]   PET radiomics in lung cancer: advances and translational challenges [J].
Zhang, Yongbai ;
Huang, Wenpeng ;
Jiao, Hao ;
Kang, Lei .
EJNMMI PHYSICS, 2024, 11 (01)
[37]   Accurate and Feasible Deep Learning Based Semi-Automatic Segmentation in CT for Radiomics Analysis in Pancreatic Neuroendocrine Neoplasms [J].
Huang, Bingsheng ;
Lin, Xiaoyi ;
Shen, Jingxian ;
Chen, Xin ;
Chen, Jia ;
Li, Zi-Ping ;
Wang, Mingyu ;
Yuan, Chenglang ;
Diao, Xian-Fen ;
Luo, Yanji ;
Feng, Shi-Ting .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) :3498-3506
[38]   Deep Radiomics: Deep Learning on Radiomics Texture Images [J].
Paul, Rahul ;
Kariev, Sherzod ;
Cherezov, Dmitry ;
Schabath, Matthew B. ;
Gillies, Robert J. ;
Hall, Lawrence O. ;
Goldgof, Dmitry B. .
MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
[39]   Diagnostic Accuracy of Deep Learning and Radiomics in Lung Cancer Staging: A Systematic Review and Meta-Analysis [J].
Zheng, Xiushan ;
He, Bo ;
Hu, Yunhai ;
Ren, Min ;
Chen, Zhiyuan ;
Zhang, Zhiguang ;
Ma, Jun ;
Ouyang, Lanwei ;
Chu, Hongmei ;
Gao, Huan ;
He, Wenjing ;
Liu, Tianhu ;
Li, Gang .
FRONTIERS IN PUBLIC HEALTH, 2022, 10 :938113
[40]   Deep learning in target prediction and drug repositioning: Recent advances and challenges [J].
Yu, Jun-Lin ;
Dai, Qing-Qing ;
Li, Guo-Bo .
DRUG DISCOVERY TODAY, 2022, 27 (07) :1796-1814