Finite-size effects in addition and chipping processes

被引:3
作者
Dyachenko, R. R. [1 ,2 ]
Matveev, S. A. [1 ,2 ]
Krapivsky, P. L. [3 ,4 ]
机构
[1] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
[2] RAS, Marchuk Inst Numer Math, Moscow 119333, Russia
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
[4] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
COAGULATION; FLUCTUATIONS; AGGREGATION; KINETICS; BEHAVIOR; GROWTH; MODELS;
D O I
10.1103/PhysRevE.108.044119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate analytically and numerically a system of clusters evolving via collisions with clusters of minimal mass (monomers). Each collision either leads to the addition of the monomer to the cluster or the chipping of a monomer from the cluster, and emerging behaviors depend on which of the two processes is more probable. If addition prevails, monomers disappear in a time that scales as ln N with the total mass N >> 1, and the system reaches a jammed state. When chipping prevails, the system remains in a quasistationary state for a time that scales exponentially with N, but eventually, a giant fluctuation leads to the disappearance of monomers. In the marginal case, monomers disappear in a time that scales linearly with N, and the final supercluster state is a peculiar jammed state; i.e., it is not extensive.
引用
收藏
页数:18
相关论文
共 50 条
[41]   Length and temperature dependence of the mechanical properties of finite-size carbyne [J].
Yang, Xueming ;
Huang, Yanhui ;
Cao, Bingyang ;
To, Albert C. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 93 :124-131
[42]   Finite-size corrections for universal boundary entropy in bond percolation [J].
de Gier, Jan ;
Jacobsen, Jesper Lykke ;
Ponsaing, Anita .
SCIPOST PHYSICS, 2016, 1 (02)
[43]   Finite-size scaling of quasi-stationary-state temperature [J].
Rodriguez, Antonio ;
Nobre, Fernando D. ;
Tsallis, Constantino .
PHYSICAL REVIEW E, 2022, 105 (04)
[44]   Non-universal finite-size scaling of rough surfaces [J].
Mandal, Pradipta Kumar ;
Jana, Debnarayan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (48)
[45]   Microcanonical finite-size scaling of an ideal Bose gas in a box [J].
Wang, Honghui ;
He, Jizhou ;
Wang, Jianhui .
EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (01)
[46]   Finite-size effects in the short-time height distribution of the Kardar-Parisi-Zhang equation [J].
Smith, Naftali R. ;
Meerson, Baruch ;
Sasorov, Pavel .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
[47]   Asymptotic Power-Law Index in Aggregation and Weighted-Chipping Processes [J].
Yamamoto, Hiroshi ;
Sekiyama, Makoto ;
Ohtsuki, Toshiya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2015, 84 (05)
[48]   Enhanced diffusion in finite-size simulations of a fragile diatomic glass former [J].
Taamalli, Sonia ;
Hinds, Julia ;
Migirditch, Samuel ;
Teboul, Victor .
PHYSICAL REVIEW E, 2016, 94 (05)
[49]   Finite-size scaling method for the Berezinskii-Kosterlitz-Thouless transition [J].
Hsieh, Yun-Da ;
Kao, Ying-Jer ;
Sandvik, Anders W. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[50]   Turbulence modulation by finite-size spherical particles in Newtonian and viscoelastic fluids [J].
Zade, Sagar ;
Lundell, Fredrik ;
Brandt, Luca .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2019, 112 :116-129