Tailoring the Pt/ionomer interface for enhancing the local oxygen transport in proton exchange membrane fuel cells

被引:10
作者
Sun, Fengman [1 ,2 ,3 ]
Liu, Haijun [1 ,2 ,3 ]
Di, Qian [2 ,3 ]
Xu, Keyi [2 ,3 ]
Chen, Ming [2 ,3 ]
Wang, Haijiang [2 ,3 ]
机构
[1] Harbin Inst Technol, Harbin 150001, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Energy Mat Elect Power, Shenzhen 518055, Peoples R China
关键词
REDUCTION REACTION; CATALYST LAYER; PERFORMANCE; RESISTANCE; IONOMER; INSIGHTS;
D O I
10.1039/d3ta03720g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to realize the high-power operation of low-cost proton exchange membrane fuel cells, it is urgent to solve the problem of oxygen mass transfer in a low Pt loading cathode at high current density. More exactly, the high local oxygen transport resistance (Rionomer) originating from the dense ionomer film on the Pt surface results in significant voltage losses. Herein, this paper proposes an exceptionally simple and cost-effective strategy to precisely regulate a Pt/ionomer interface to decrease Rionomer only by introducing hydrophobic nano-SiO2 into a cathode catalyst layer. As a result, the cathode catalyst layer modified by nano-SiO2 with a particle size of 10 nm and a content of 10% exhibits optimal mass transfer characteristics, and a specific Pt/ionomer interface with low Rionomer is established. The microstructure characterization of the catalyst layer confirms that the majority of ionomer adheres to nano-SiO2 particles and evenly distributes around the Pt/C agglomerates. Moreover, the stronger affinity of nano-SiO2 to ionomer is verified by molecular dynamics simulation. Collectively, the ability of nano-SiO2 to capture ionomer effectively reduces the ionomer density on the Pt surface, thus establishing a highly efficient oxygen-delivering Pt/ionomer interface. This work highlights an extremely promising method for Pt/ionomer interface construction of catalyst layer with high oxygen mass-transfer characteristics. A specific Pt/ionomer interface with good oxygen mass-transfer characteristics is tailored by utilizing nano-SiO2 to capture ionomer, and the mechanism for modulating Pt/ionomer interface to enhance local oxygen transport is elucidated.
引用
收藏
页码:24026 / 24037
页数:12
相关论文
共 45 条
[1]   Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells [J].
Ahn, Chi-Yeong ;
Park, Ji Eun ;
Kim, Sungjun ;
Kim, Ok-Hee ;
Hwang, Wonchan ;
Her, Min ;
Kang, Sun Young ;
Park, SungBin ;
Kwon, Oh Joong ;
Park, Hyun S. ;
Cho, Yong-Hun ;
Sung, Yung-Eun .
CHEMICAL REVIEWS, 2021, 121 (24) :15075-15140
[2]   Measurement of Oxygen Transport Resistance in PEM Fuel Cells by Limiting Current Methods [J].
Baker, Daniel R. ;
Caulk, David A. ;
Neyerlin, Kenneth C. ;
Murphy, Michael W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (09) :B991-B1003
[3]   Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system [J].
Chen, Ming ;
Zhao, Chen ;
Sun, Fengman ;
Fan, Jiantao ;
Li, Hui ;
Wang, Haijiang .
ETRANSPORTATION, 2020, 5 (05)
[4]   An ingenious design of nanoporous nafion film for enhancing the local oxygen transport in cathode catalyst layers of PEMFCs [J].
Cheng, Xiaojing ;
You, Jiabin ;
Shen, Shuiyun ;
Wei, Guanghua ;
Yan, Xiaohui ;
Wang, Chao ;
Zhang, Junliang .
CHEMICAL ENGINEERING JOURNAL, 2022, 439
[5]   Perspectives on Challenges and Achievements in Local Oxygen Transport of Low Pt Proton Exchange Membrane Fuel Cells [J].
Cheng, Xiaojing ;
Shen, Shuiyun ;
Wei, Guanghua ;
Wang, Chao ;
Luo, Liuxuan ;
Zhang, Junliang .
ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (08)
[6]   The fabrication of fiber-reinforced polyamine-coated silica paste and the mechanical properties of SiO2f/SiO2 composites via stereolithography combined with silica sol impregnation [J].
Dong, Wencai ;
Bao, Chonggao ;
Sun, Kun ;
Ma, Haiqiang ;
Li, Shijia ;
Liu, Taoxin ;
Lu, Wenqi .
ADDITIVE MANUFACTURING, 2022, 53
[7]   Nano-scale control of the ionomer distribution by molecular masking of the Pt surface in PEMFCs [J].
Doo, Gisu ;
Yuk, Seongmin ;
Lee, Ji Hye ;
Choi, Sungyu ;
Lee, Dong-Hyun ;
Lee, Dong Wook ;
Hyun, Jonghyun ;
Kwon, Sung Hyun ;
Lee, Seung Geol ;
Kim, Hee-Tak .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (26) :13004-13013
[8]   Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells [J].
Fan, Jiantao ;
Chen, Ming ;
Zhao, Zhiliang ;
Zhang, Zhen ;
Ye, Siyu ;
Xu, Shaoyi ;
Wang, Haijiang ;
Li, Hui .
NATURE ENERGY, 2021, 6 (05) :475-486
[9]   Towards ultralow platinum loading proton exchange membrane fuel cells [J].
Fan, Linhao ;
Deng, Hao ;
Zhang, Yingguang ;
Du, Qing ;
Leung, Dennis Y. C. ;
Wang, Yun ;
Jiao, Kui .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (04) :1466-1479
[10]   Improving PEMFC Performance Using Short-Side-Chain Low-Equivalent-Weight PFSA Ionomer in the Cathode Catalyst Layer [J].
Garsany, Yannick ;
Atkinson, Robert W., III ;
Sassin, Megan B. ;
Hjelm, Rachel M. E. ;
Gould, Benjamin D. ;
Swider-Lyons, Karen E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (05) :F381-F391