Multi-label feature selection via maximum dynamic correlation change and minimum label redundancy

被引:3
|
作者
Ma, Xi-Ao [1 ,2 ,3 ]
Jiang, Wentian [1 ]
Ling, Yun [1 ]
Yang, Bailin [1 ]
机构
[1] Zhejiang Gongshang Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Zhejiang Gongshang Univ, Collaborat Innovat Ctr Computat Social Sci, Hangzhou 310018, Peoples R China
[3] Chongqing Univ Arts & Sci, Multidimens Data Percept & Intelligent Recognit C, Chongqing 402160, Peoples R China
关键词
Multi-label classification; Multi-label feature selection; Information-theoretic measure; Dynamic correlation change; Label redundancy; PROTEIN FUNCTION PREDICTION;
D O I
10.1007/s10462-023-10599-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Information-theoretic measures have been commonly applied to evaluate the relevance and redundancy in multi-label feature selection. However, the current multi-label feature selection methods based on information-theoretic measures neglect the dynamic changes in the relevance of selected features and candidate features. Furthermore, they also do not fully consider the influence of label redundancy on the relevance of candidate features. In this paper, we first propose a new feature relevance term named Dynamic Correlation Change (DCC), which uses two conditional mutual information terms to evaluate the dynamic changes in the relevance of selected features and candidate features. We then introduce a new label redundancy term named Label Redundancy with Interaction Information (LRII), which more accurately quantifies the influence of label redundancy on the relevance of candidate features. On this basis, we design a new multi-label feature selection method, called Maximum Dynamic Correlation Change and Minimum Label Redundancy (MDCCMLR), by combining DCC and LRII. Finally, we conduct extensive experiments in order to verify the performance of our method by comparing it with some state-of-the-art multi-label feature selection methods based on information-theoretic measures in terms of six evaluation metrics. The experimental results show that the MDCCMLR method outperforms the other comparison methods on all six evaluation metrics.
引用
收藏
页码:S3099 / S3142
页数:44
相关论文
共 50 条
  • [1] Multi-label feature selection via maximum dynamic correlation change and minimum label redundancy
    Xi-Ao Ma
    Wentian Jiang
    Yun Ling
    Bailin Yang
    Artificial Intelligence Review, 2023, 56 : 3099 - 3142
  • [2] Novel multi-label feature selection via label symmetric uncertainty correlation learning and feature redundancy evaluation
    Dai, Jianhua
    Chen, Jiaolong
    Liu, Ye
    Hu, Hu
    KNOWLEDGE-BASED SYSTEMS, 2020, 207
  • [3] Multi-label feature selection based on label correlations and feature redundancy
    Fan, Yuling
    Chen, Baihua
    Huang, Weiqin
    Liu, Jinghua
    Weng, Wei
    Lan, Weiyao
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [4] Multi-label feature selection via redundancy of the selected feature set
    Zhong, Haibo
    Zhang, Ping
    Liu, Guixia
    APPLIED INTELLIGENCE, 2023, 53 (09) : 11073 - 11091
  • [5] Multi-label feature selection via redundancy of the selected feature set
    Haibo Zhong
    Ping Zhang
    Guixia Liu
    Applied Intelligence, 2023, 53 : 11073 - 11091
  • [6] Multi-Label Feature Selection Via Adaptive Label Correlation Estimation
    Zhang, Zan
    Zhang, Zhe
    Yao, Jialu
    Liu, Lin
    Li, Jiuyong
    Wu, Gongqing
    Wu, Xindong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (09)
  • [7] Dynamic multi-label feature selection algorithm based on label importance and label correlation
    Chen, Weiliang
    Sun, Xiao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3379 - 3396
  • [8] Multi-label feature selection via label relaxation
    Fan, Yuling
    Liu, Peizhong
    Liu, Jinghua
    APPLIED SOFT COMPUTING, 2025, 175
  • [9] Multi-label Feature Selection via Global Relevance and Redundancy Optimization
    Zhang, Jia
    Lin, Yidong
    Jiang, Min
    Li, Shaozi
    Tang, Yong
    Tan, Kay Chen
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2512 - 2518
  • [10] Multi-label feature selection based on correlation label enhancement
    He, Zhuoxin
    Lin, Yaojin
    Wang, Chenxi
    Guo, Lei
    Ding, Weiping
    INFORMATION SCIENCES, 2023, 647