Topological localized region of Goos-Hanchen shifts in reflection and transmission

被引:4
作者
Khan, Aizaz
Mahmoud, Emad E. [2 ]
Ahmad, Iftikhar [1 ,3 ]
El Din, Sayed M. [4 ]
Bacha, Bakht Amin [1 ,3 ]
Akgul, Ali [5 ,6 ,7 ]
机构
[1] Univ Malakand, Dept Phys, Khyber Pakhtunkhwa, Pakistan
[2] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Pakistan
[3] Univ Malakand, Ctr Computat Mat Sci, Khyber Pakhtunkhwa, Pakistan
[4] Future Univ Egypt, Fac Engn, Ctr Res, New Cairo 11835, Egypt
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[6] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[7] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd,Nicosia Mersin 10, TR-99138 Istanbul, Turkiye
关键词
Goos-Hanchen shift; Topologically localized regions; Density matrix formalism; DISPLACEMENTS;
D O I
10.1016/j.rinp.2023.106738
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this manuscript, the Goos-Hanchen shift of the transmitted and reflected probe beam is controlled and modified. Topologically localized regions are reported in the G-H shift by introducing the position and orbital angular momentum dependency in the Rabi frequencies of the control fields. The system parameters along with the azimuthal quantum number are used to control and modify G-H shift as well as the topological regions. Crater and peak type topological regions are reported in the G-H shift of the reflected as well as transmitted beam. The number of localized regions are reported to strictly follow the general formula 2l2. The maximum shift in the reflected spectrum is reported to be Sr/.1 = -140, where as in the transmitted spectrum it is only S1.1 = -15. The modified results might have significant applications in optical waveguide switches and sensors.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Scalar Goos-Hanchen shift for Robin boundary conditions [J].
Dennis, Mark R. ;
Goette, Joerg B. .
COMPLEX LIGHT AND OPTICAL FORCES V, 2011, 7950
[42]   The Goos-Hanchen shift in Helmholtz-Gauss beams [J].
Jezzini, Moises A. ;
Gutierrez-Vega, Julio C. .
LASER BEAM SHAPING VII, 2006, 6290
[43]   Phase control of optical Goos-Hanchen shifts in a quantum dot nanostructure via high refractive index [J].
Raheli, Ali ;
Abdulkareem, Sarkew S. ;
Al-Qargholi, Basim .
LASER PHYSICS, 2022, 32 (08)
[44]   Investigating the Goos-Hanchen shift for a fractional dual planar interface [J].
Mehboob, Aniqa ;
Syed, Aqeel A. ;
Naqvi, Qaisar Abbas .
OPTIK, 2019, 185 :910-916
[45]   Optical weak measurements without removing the Goos-Hanchen phase [J].
Araujo, Manoel P. ;
De Leo, Stefano ;
Maia, Gabriel G. .
JOURNAL OF MODERN OPTICS, 2018, 65 (07) :837-846
[46]   Goos-Hanchen shifts of the reflected waves from the inhomogeneous slab with a positive and negative index transition layer [J].
Mao, Hongmin ;
Zang, Taocheng ;
Sun, Jian ;
Pan, Tao ;
Xu, Guoding .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (04) :829-833
[47]   Influence of Partial Coherent Light on the Transmission Spectrum and Goos-Hanchen Shift in Rydberg Atomic Medium [J].
Ali, Dilawar ;
Iftikhar, Muhammad Umer ;
Abbas, Muqaddar ;
Ziauddin .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (03) :281-286
[48]   Giant transmission Goos-Hanchen shift in surface plasmon polaritons excitation and its physical origin [J].
Yang Yang ;
Liu Ju ;
Li Zhi-Yuan .
CHINESE PHYSICS B, 2015, 24 (07)
[49]   Goos-Hanchen shift in a metasurface of core-shell nanoparticles [J].
Zoghi, Maryam .
OPTICS COMMUNICATIONS, 2020, 475
[50]   Goos-Hanchen shift in anisotropic left-handed materials [J].
Jiang, Yongyuan ;
Zhang, Yongqiang ;
Fu, Yanxia ;
Hou, Chunfeng ;
Zhou, Zhongxiang ;
Sun, Xiudong .
FUNDAMENTAL PROBLEMS OF OPTOELECTRONICS AND MICROELECTRONICS III, PTS 1 AND 2, 2007, 6595