GLOBAL WELL-POSEDNESS AND STABILITYOF THE INHOMOGENEOUS KINETICWAVE EQUATION NEAR VACUUM

被引:1
作者
Ampatzoglou, Ioakeim [1 ]
机构
[1] CUNY, Baruch Coll, Dept Math, New York, NY 10017 USA
关键词
Kinetic wave equation; well-posedness; wave turbulence; Boltzmann equation; inhomogeneous; NONLINEAR BOLTZMANN-EQUATION; LINEAR ENERGY TRANSFER; GRAVITY-WAVE SPECTRUM; CAUCHY-PROBLEM; MILD SOLUTIONS; EXISTENCE; UNIQUENESS; GAS; SYSTEM; R3;
D O I
10.3934/krm.2024003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, we prove global in time existence, uniqueness and stability of mild solutions near vacuum for the 4-wave inhomogeneous kinetic wave equation, for Laplacian dispersion relation in dimension d = 2, 3. We also show that for non-negative initial data, the solution remains non-negative. This is achieved by connecting the inhomogeneous kinetic wave equation, for such dimensions, to the cubic part of the quantum Boltzmann equation for bosons, with Maxwell or hard potential and no collisional averaging.
引用
收藏
页码:838 / 854
页数:17
相关论文
共 45 条
[1]   Distributional and Classical Solutions to the Cauchy Boltzmann Problem for Soft Potentials with Integrable Angular Cross Section [J].
Alonso, Ricardo J. ;
Gamba, Irene M. .
JOURNAL OF STATISTICAL PHYSICS, 2009, 137 (5-6) :1147-1165
[2]   Existence of Global Solutions to the Cauchy Problem for the Inelastic Boltzmann Equation with Near-vacuum Data [J].
Alonso, Ricardo J. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) :999-1022
[3]   Global well-posedness of a binary-ternary Boltzmann equation [J].
Ampatzoglou, Ioakeim ;
Gamba, Irene M. ;
Pavlovic, Natasa ;
Taskovic, Maja .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (02) :327-369
[4]  
[Anonymous], 1998, GUID WAV AN FOR
[5]   ON THE CAUCHY-PROBLEM FOR THE NONLINEAR BOLTZMANN-EQUATION GLOBAL EXISTENCE UNIQUENESS AND ASYMPTOTIC STABILITY [J].
BELLOMO, N ;
TOSCANI, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (02) :334-338
[6]   Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrodinger equation [J].
Buckmaster, T. ;
Germain, P. ;
Hani, Z. ;
Shatah, J. .
INVENTIONES MATHEMATICAE, 2021, 225 (03) :787-855
[7]  
Collot C., 2019, ARXIV
[8]  
Collot C., 2020, ARXIV
[9]  
Collot C, 2024, ARCH RATION MECH AN, V248, DOI 10.1007/s00205-023-01953-x
[10]  
Davidson R.C., 1972, METHODS NONLINEAR PL