Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery

被引:40
作者
Fang, Zhenhua [1 ]
Pan, Zhen [1 ]
Ma, Guiyang [1 ]
Yu, Jingxian [2 ]
Shang, Liyan [3 ]
Zhang, Zhien [4 ]
机构
[1] Liaoning Petrochem Univ, Coll Petr Engn, Fushun 113001, Peoples R China
[2] Liaoning Petrochem Univ, Coll Sci, Fushun 113001, Peoples R China
[3] Liaoning Petrochem Univ, Coll Environm & Safety Engn, Fushun 113001, Peoples R China
[4] West Virginia Univ, Dept Chem & Biomed Engn, 401 Evansdale Dr, Morgantown, WV 26506 USA
关键词
Liquefied natural gas cold energy; Three -stage organic Rankine cycle; Double organic flash cycle; Exergoeconomic analysis; Exergoenvironmental analysis; Multi -objective optimization; ORGANIC RANKINE-CYCLE; UTILIZING LNG; THERMOECONOMIC ANALYSIS; GENERATION SYSTEM; CCHP SYSTEM; FLASH CYCLE; EXERGY; PERFORMANCE; DESIGN; ORC;
D O I
10.1016/j.energy.2023.126752
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper designs and investigates a novel combined cooling, heating, and power (CCHP) system for effectively utilizing liquefied natural gas (LNG) cold energy and waste heat of exhaust gas based on thermodynamic, exergoeconomic and exergoenvironmental analysis. The effects of the mass flow rate of the ORC-I's working fluid, turbine 1 inlet temperature, compressor and pump outlet pressure and the turbines' isentropic efficiency on the system performance were investigated. In addition, the non-dominated sorting genetic algorithm II (NSGA-II) and the particle swarm optimization (PSO) were employed to optimize the CCHP system with multiple objectives, respectively, to find the optimal operating conditions of the system. The optimization results showed PSO was superior for the multi-objective optimization of this novel CCHP system compared to NSGA-II, showing the exergy efficiency, product unit cost and product unit environmental impact of 70.20%, 21.50 $/GJ and 57.91 mPts/GJ, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Multi-objective optimization and evaluation of hybrid combined cooling, heating and power system considering thermal energy storage
    Ren, Xin-Yu
    Wang, Zhi-Hua
    Li, Ling -Ling
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [32] Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink
    Ahmadi, Mohammad H.
    Mehrpooya, Mehdi
    Pourfayaz, Fathollah
    ENERGY CONVERSION AND MANAGEMENT, 2016, 119 : 422 - 434
  • [33] Exergoeconomic and Exergoenvironmental Analysis of a Novel Power and Cooling Cogeneration System Based on Organic Rankine Cycle and Ejector Refrigeration Cycle
    Tao, Jinke
    Wang, Huitao
    Wang, Jianjun
    Feng, Chaojun
    ENERGIES, 2022, 15 (21)
  • [34] Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility
    Wang, Jiangjiang
    Liu, Yi
    Ren, Fukang
    Lu, Shuaikang
    ENERGY, 2020, 197 (197)
  • [35] Thermodynamic and exergoeconomic analysis of a novel CO2 based combined cooling, heating and power system
    Zhang, Feng
    Liao, Gaoliang
    Jiaqiang, E.
    Chen, Jingwei
    Leng, Erwei
    Sunden, Bengt
    ENERGY CONVERSION AND MANAGEMENT, 2020, 222
  • [36] Exergoeconomic analysis and optimization of the Allam cycle with liquefied natural gas cold exergy utilization
    Chan, Wen
    Li, Huixiong
    Li, Xi
    Chang, Fucheng
    Wang, Lele
    Feng, Zemin
    ENERGY CONVERSION AND MANAGEMENT, 2021, 235
  • [37] Multi-objective optimization of combined cooling, heating, and power (CCHP) system based on CNG engine
    Sheykhi, Mohammad
    Mehregan, Mahmood
    Emamian, Amin
    Ghorbani, Saeed
    Aliakbari, Karim
    Delouei, Amin Amiri
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 61
  • [38] Energy, exergy and exergoeconomic analysis of a combined cooling, desalination and power system
    Zhou, Shihe
    Liu, Xinyu
    Bian, Yongning
    Shen, Shengqiang
    ENERGY CONVERSION AND MANAGEMENT, 2020, 218
  • [39] Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery
    Choi, In-Hwan
    Lee, Sangick
    Seo, Yutaek
    Chang, Daejun
    ENERGY, 2013, 61 : 179 - 195
  • [40] Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system
    Wei, Dajun
    Chen, Alian
    Sun, Bo
    Zhang, Chenghui
    ENERGY, 2016, 98 : 296 - 307