Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery

被引:40
作者
Fang, Zhenhua [1 ]
Pan, Zhen [1 ]
Ma, Guiyang [1 ]
Yu, Jingxian [2 ]
Shang, Liyan [3 ]
Zhang, Zhien [4 ]
机构
[1] Liaoning Petrochem Univ, Coll Petr Engn, Fushun 113001, Peoples R China
[2] Liaoning Petrochem Univ, Coll Sci, Fushun 113001, Peoples R China
[3] Liaoning Petrochem Univ, Coll Environm & Safety Engn, Fushun 113001, Peoples R China
[4] West Virginia Univ, Dept Chem & Biomed Engn, 401 Evansdale Dr, Morgantown, WV 26506 USA
关键词
Liquefied natural gas cold energy; Three -stage organic Rankine cycle; Double organic flash cycle; Exergoeconomic analysis; Exergoenvironmental analysis; Multi -objective optimization; ORGANIC RANKINE-CYCLE; UTILIZING LNG; THERMOECONOMIC ANALYSIS; GENERATION SYSTEM; CCHP SYSTEM; FLASH CYCLE; EXERGY; PERFORMANCE; DESIGN; ORC;
D O I
10.1016/j.energy.2023.126752
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper designs and investigates a novel combined cooling, heating, and power (CCHP) system for effectively utilizing liquefied natural gas (LNG) cold energy and waste heat of exhaust gas based on thermodynamic, exergoeconomic and exergoenvironmental analysis. The effects of the mass flow rate of the ORC-I's working fluid, turbine 1 inlet temperature, compressor and pump outlet pressure and the turbines' isentropic efficiency on the system performance were investigated. In addition, the non-dominated sorting genetic algorithm II (NSGA-II) and the particle swarm optimization (PSO) were employed to optimize the CCHP system with multiple objectives, respectively, to find the optimal operating conditions of the system. The optimization results showed PSO was superior for the multi-objective optimization of this novel CCHP system compared to NSGA-II, showing the exergy efficiency, product unit cost and product unit environmental impact of 70.20%, 21.50 $/GJ and 57.91 mPts/GJ, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Exergoeconomic optimization of a novel multigeneration system driven by geothermal heat source and liquefied natural gas cold energy recovery
    Parikhani, Towhid
    Gholizadeh, Towhid
    Ghaebi, Hadi
    Sadat, Seyed Mohammad Sattari
    Sarabi, Mehrdad
    JOURNAL OF CLEANER PRODUCTION, 2019, 209 : 550 - 571
  • [22] A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis
    Ghaebi, Hadi
    Parikhani, Towhid
    Rostamzadeh, Hadi
    RENEWABLE ENERGY, 2018, 119 : 513 - 527
  • [23] Energy, Exergy, Economic, Exergoeconomic, and Exergoenvironmental (5E) Analyses and Optimization of a Novel Three-Stage Cascade System Based on Liquefied Natural Gas Cold Energy
    Wu, Jingjing
    Shang, Liyan
    Pan, Zhen
    Zhou, Li
    ENERGY TECHNOLOGY, 2022, 10 (07)
  • [24] Multi-objective optimization and exergoeconomic analysis of a novel solar desalination system with absorption cooling
    Mahmoodnezhad, Motahare
    Nejad, Ali Abbas
    Ahmadi, Mohammad Hossein
    ENERGY, 2024, 312
  • [25] Exergoeconomic and Environmental Analysis and Multi-Objective Optimization of a New Regenerative Gas Turbine Combined Cycle
    Baghernejad, Ali
    Anvari-Moghaddam, Amjad
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [26] Multi-objective optimization and improvement of multi-energy combined cooling, heating and power system based on system simplification
    Zhao, Xiangming
    Guo, Jianxiang
    He, Maogang
    RENEWABLE ENERGY, 2023, 217
  • [27] Advanced exergy and exergo-economic analyses of a novel combined power system using the cold energy of liquefied natural gas
    Ozen, Dilek Nur
    Kocak, Betul
    ENERGY, 2022, 248
  • [28] Energy, exergy, exergoeconomic, and environmental analyses and multi-objective optimization of a biomass-to-energy integrated thermal power plant
    He, Fan
    Liu, Xiaoyu
    Wang, Meitao
    Zhou, Shuang
    Heydarian, Dariush
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (07) : 5629 - 5648
  • [29] 4E assessment of a geothermal-driven combined power and cooling system coupled with a liquefied natural gas cold energy recovery unit
    Lin, Yaoting
    Zhou, Wei
    Chauhdary, Sohaib Tahir
    Zuo, Wenshuai
    RENEWABLE ENERGY, 2025, 240
  • [30] Performance optimization and multi-objective analysis of an innovative solar-driven combined power and cooling system
    Yadav, Vinay Kumar
    Sarkar, Jahar
    Ghosh, Pradyumna
    ENERGY AND BUILDINGS, 2024, 307