Suspension polymerization for synthesis of new hypercrosslinked polymers nanoparticles for removal of copper ions from aqueous solutions

被引:2
|
作者
Metwally, Amal M. [1 ]
ElKhawaga, Hanaa A. [2 ]
Shaaban, Abdel-Fattah F. [1 ]
Reda, Laila M. [3 ]
机构
[1] Benha Univ, Fac Sci, Chem Dept, Banha, Egypt
[2] Benha Univ, Fac Engn Shoubra, Banha, Egypt
[3] Benha Univ, Fac Engn Benha, Basic Sci Dept, Banha, Egypt
关键词
Suspension polymerization; Divinyl benzene; Chelating resins; Nanoparticles and morphology; CHELATING RESIN; CO2; CAPTURE; METAL-IONS; ADSORPTION; EQUILIBRIUM; CU2+; ACID; PORE;
D O I
10.1007/s00289-022-04654-9
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Novel hypercrosslinked polymers nanoparticles (HCPNs) were designed by suspension polymerization technique with high surface area as well as HCPNs with functional groups have the affinity to removal of copper ions from aqueous solutions. Two HCPNs were synthesized through a two-step reaction, initially including the suspension polymerization of N-methacryloxytetrachlorophthalimide (NMTPA) with divinyl benzene (DVB) to give poly(NMTPA-co-DVB) and followed by the treatment of poly(NMTP-co-DVB) with triethylenetetramine (TETA) to give HCPNs (1) and with tetraethylenepentamine (TEPA) to give HCPNs (2). Using scanning electron microscopy and transmission electron microscopy, the surface morphology of the particles of the synthesized HCPNs was detected, and also, the particle size was measured. Also, the chemical structures of the synthesized compounds were illustrated by Fourier transform infrared spectroscopy and H-1-nuclear magnetic resonance (H-1 NMR). Thermal stability of the synthesized HCPNs was characterized by thermogravimetric analysis. The results illustrated that the particle size of the synthesized HCPNs is in range of 25-50 nm. The synthesized HCPNs compounds were reported for the separation of copper ions from wastewater, in which the results showed a very good affinity for these compounds for separation of copper ions from wastewater.
引用
收藏
页码:12249 / 12270
页数:22
相关论文
共 50 条
  • [31] Copper oxide nanoparticles for the removal of divalent nickel ions from aqueous solution
    Jain, Monika
    Yadav, Mithilesh
    Chaudhry, Smita
    TOXIN REVIEWS, 2021, 40 (04) : 872 - 885
  • [32] Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions
    Sani, Hannatu Abubakar
    Ahmad, Mansor B.
    Hussein, Mohd Zobir
    Ibrahim, Nor Azowa
    Musa, Aminu
    Saleh, Tawfik A.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2017, 109 : 97 - 105
  • [33] FLUORIDE REMOVAL FROM AQUEOUS SOLUTIONS BY CUPRICOXIDE NANOPARTICLES
    Bazrafshan, Edris
    Balarak, Davoud
    Panahi, Ayat Hossein
    Kamani, Hossein
    Mahvi, Amir Hossein
    FLUORIDE, 2016, 49 (03) : 233 - 244
  • [34] A New Modified Exfoliated Graphene Oxide for Removal of Copper(II), Lead(II) and Nickel(II) Ions from Aqueous Solutions
    Shaaban, A. F.
    Khalil, A. A.
    Elewa, B. S.
    Ismail, M. N.
    Eldemerdash, U. M.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2019, 62 (10): : 1823 - 1849
  • [35] Removal of lead(II) ions from aqueous solutions using diatomite nanoparticles
    Beheshti, Hoda
    Irani, Mohammad
    DESALINATION AND WATER TREATMENT, 2016, 57 (40) : 18799 - 18805
  • [36] REMOVAL OF GALLIUM IONS FROM AQUEOUS SOLUTIONS USING TEA WASTE BY ADSORPTION
    Chou, Wei-Lung
    Wang, Chih-Ta
    Huang, Yen-Hsiang
    FRESENIUS ENVIRONMENTAL BULLETIN, 2010, 19 (12): : 2848 - 2856
  • [37] REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTIONS USING MAPLE LEAVES AS A LOW-COST BIOSORBENT
    Witek-Krowiak, A.
    Eckert, K.
    Modelski, Sz.
    CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA, 2010, 31 (04): : 813 - 824
  • [38] UTILIZATION OF AGRICULTURAL WASTE ADSORBENT FOR THE REMOVAL OF LEAD IONS FROM AQUEOUS SOLUTIONS
    Yusuff, Adeyinka Sikiru
    Popoola, Lekan Taofeek
    Anochie, Victor
    ACTA POLYTECHNICA, 2021, 61 (04) : 570 - 578
  • [39] Removal of copper(II) and cadmium(II) ions from aqueous solutions by biosorption onto pine cone
    Degirmen, Gorkem
    Kilic, Murat
    Cepeliogullar, Ozge
    Putun, Ayse E.
    WATER SCIENCE AND TECHNOLOGY, 2012, 66 (03) : 564 - 572
  • [40] Preparation of submicron ion-exchange fibers and application in copper ions removal from aqueous solutions
    Feng, Shuqin
    Shen, Xinyuan
    E-POLYMERS, 2010,