Multipass hollow fiber membrane modules for membrane distillation

被引:14
作者
Tsai, Jheng-Han [1 ]
Quist-Jensen, Cejna [2 ]
Ali, Aamer [2 ]
机构
[1] Dept Chem Engn & Biotechnol, Philippa Fawcett Dr, Cambridge CB3 0AS, England
[2] Aalborg Univ, Dept Chem & Biosci, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
关键词
Membrane distillation; Energy efficiency; Hollow fibers; Multipass modules; OPTIMIZATION; DESALINATION; DESIGN; WATER;
D O I
10.1016/j.desal.2022.116239
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Membrane distillation (MD) is an interesting process for desalination; however high thermal energy consumption remains one of the main obstacles in its widespread adoption. The current study presents multipass hollow fiber membrane modules to improve thermal efficiency of MD process. Fundamentally three module designs are considered: conventional one shell and one tube (fiber) pass (A), 1 shell and multiple tube passes (B/C) and equal but multiple shell and tube passes (D). The performance of the proposed designs is analyzed as a function of length of each pass, number of passes and operating conditions by using Aspen Plus simulator. The results demonstrate that the traditional design A yields the highest flux - up to 92 % higher than the multipass design D. On the other hand, the multipass design D is the most energy efficiency and shows up to 35 % less thermal energy consumption than the conventional single pass design of the same length. Single shell and multiple tube pass designs (B/C) show higher flux than D; however, their specific thermal energy consumption remains the highest among all the designs investigated. The pressure drop in multipass modules was marginally (1.5 %) higher than the conventional single pass modules.
引用
收藏
页数:15
相关论文
共 50 条
[21]   Calibration and analysis of a direct contact membrane distillation model using Monte Carlo filtering [J].
Hitsov, I. ;
Eykens, L. ;
De Sitter, K. ;
Dotremont, C. ;
Pinoy, L. ;
van der Bruggen, B. ;
Nopens, I. .
JOURNAL OF MEMBRANE SCIENCE, 2016, 515 :63-78
[22]   Characterization of microporous membranes for use in membrane contactors [J].
Iversen, SB ;
Bhatia, VK ;
DamJohansen, K ;
Jonsson, G .
JOURNAL OF MEMBRANE SCIENCE, 1997, 130 (1-2) :205-217
[23]  
Kern D., 1983, Process heat transfer
[24]   Membranes and theoretical modeling of membrane distillation: A review [J].
Khayet, Mohamed .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2011, 164 (1-2) :56-88
[25]   Increasing the Performance of Vacuum Membrane Distillation Using Micro-Structured Hydrophobic Aluminum Hollow Fiber Membranes [J].
Ko, Chia-Chieh ;
Chen, Chien-Hua ;
Chen, Yi-Rui ;
Wu, Yu-Hsun ;
Lu, Soon-Chien ;
Hu, Fa-Chun ;
Li, Chia-Ling ;
Tung, Kuo-Lun .
APPLIED SCIENCES-BASEL, 2017, 7 (04)
[26]   Desalination with a Cascade of Cross-Flow Hollow Fiber Membrane Distillation Devices Integrated with a Heat Exchanger [J].
Lee, Hanyong ;
He, Fei ;
Song, Liming ;
Gilron, Jack ;
Sirkar, Kamalesh K. .
AICHE JOURNAL, 2011, 57 (07) :1780-1795
[27]   The potential of hollow fiber vacuum multi-effect membrane distillation for brine treatment [J].
Li, Qiyuan ;
Omar, Amr ;
Cha-Umpong, Withita ;
Liu, Qian ;
Li, Xiaopeng ;
Wen, Jianping ;
Wang, Yinfeng ;
Razmjou, Amir ;
Guan, Jing ;
Taylor, Robert A. .
APPLIED ENERGY, 2020, 276
[28]   Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling [J].
Lin, Shihong ;
Yip, Ngai Yin ;
Elimelech, Menachem .
JOURNAL OF MEMBRANE SCIENCE, 2014, 453 :498-515
[29]   Hollow fiber membrane modules [J].
Mat, Norfamilabinti Che ;
Lou, Yuecun ;
Lipscomb, G. Glenn .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2014, 4 :18-24
[30]   Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future [J].
Peng, Na ;
Widjojo, Natalia ;
Sukitpaneenit, Panu ;
Teoh, May May ;
Lipscomb, G. Glenn ;
Chung, Tai-Shung ;
Lai, Juin-Yih .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (10) :1401-1424