A comparison of different machine learning models for landslide susceptibility mapping in Rize (Türkiye)

被引:0
作者
Bilgilioglu, Hacer [1 ]
机构
[1] Aksaray Univ, Fac Engn, Dept Geol Engn, TR-68100 Aksaray, Turkiye
来源
BALTICA | 2023年 / 36卷 / 02期
关键词
landslide; susceptibility; machine learning; Rize; XGBoost; random forest (RF); ANALYTICAL HIERARCHY PROCESS; SUPPORT VECTOR MACHINES; FREQUENCY RATIO; 3; GORGES; AREA; MULTICRITERIA; ALGORITHMS; HIMALAYAN; PROVINCE; SYSTEM;
D O I
10.5200/baltica.2023.2.3
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The main purpose of this study was to compare the performance and validation of six machine learning models (extreme gradient boosting, random forest, artificial neural network, support vector machine, C4.5 decision tree, and naive Bayes) in landslide susceptibility modelling. The province of Rize, which has the highest rate of landslide events in Turkiye, was chosen as the study area. The conditioning factors (distance to roads, lithology, drainage density, slope, topographic wetness index (TWI), soil depth, distance to rivers, land use, NDVI, plan curvature, elevation, aspect, profile curvature) affecting the landslide were determined using the ReliefF method. A total of 516 landslides were identified for creating models, comparing performance, and validating results. The performance and validation of the models were determined by the receiver operating characteristics (ROC), sensitivity, specificity, accuracy, and kappa index. The results show that the XGBoost model outperforms the other five machine learning models in terms of accuracy and performance and is the most effective model for generating landslide susceptibility maps in Rize (Turkiye).
引用
收藏
页码:115 / 132
页数:18
相关论文
共 50 条
  • [21] Exploring advanced machine learning techniques for landslide susceptibility mapping in Yanchuan County, China
    Chen, Wei
    Guo, Chao
    Lin, Fanghao
    Zhao, Ruixin
    Li, Tao
    Tsangaratos, Paraskevas
    Ilia, Ioanna
    EARTH SCIENCE INFORMATICS, 2024, 17 (06) : 5385 - 5402
  • [22] An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping
    Ullah, Israr
    Aslam, Bilal
    Shah, Syed Hassan Iqbal Ahmad
    Tariq, Aqil
    Qin, Shujing
    Majeed, Muhammad
    Havenith, Hans-Balder
    LAND, 2022, 11 (08)
  • [23] Effect of spatial resolution and data splitting on landslide susceptibility mapping using different machine learning algorithms
    Abraham, Minu Treesa
    Satyam, Neelima
    Jain, Prashita
    Pradhan, Biswajeet
    Alamri, Abdullah
    GEOMATICS NATURAL HAZARDS & RISK, 2021, 12 (01) : 3381 - 3408
  • [24] Feature elimination and comparison of machine learning algorithms in landslide susceptibility mapping
    Jesudasan Jacinth Jennifer
    Environmental Earth Sciences, 2022, 81
  • [25] Comparative study of landslide susceptibility mapping with different recurrent neural networks
    Wang, Yi
    Fang, Zhice
    Wang, Mao
    Peng, Ling
    Hong, Haoyuan
    COMPUTERS & GEOSCIENCES, 2020, 138
  • [26] Comparison of multiple conventional and unconventional machine learning models for landslide susceptibility mapping of Northern part of Pakistan
    Aslam, Bilal
    Zafar, Adeel
    Khalil, Umer
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2022,
  • [27] Machine learning and fractal theory models for landslide susceptibility mapping: Case study from the Jinsha River Basin
    Hu, Qiao
    Zhou, Yi
    Wang, Shixing
    Wang, Futao
    GEOMORPHOLOGY, 2020, 351
  • [28] Comparing Convolutional Neural Network and Machine Learning Models in Landslide Susceptibility Mapping: A Case Study in Wenchuan County
    Zhang, Sikui
    Bai, Lin
    Li, Yuanwei
    Li, Weile
    Xie, Mingli
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [29] A comprehensive review of machine learning-based methods in landslide susceptibility mapping
    Liu, Songlin
    Wang, Luqi
    Zhang, Wengang
    He, Yuwei
    Pijush, Samui
    GEOLOGICAL JOURNAL, 2023, 58 (06) : 2283 - 2301
  • [30] Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey
    Ado, Moziihrii
    Amitab, Khwairakpam
    Maji, Arnab Kumar
    Jasinska, Elzbieta
    Gono, Radomir
    Leonowicz, Zbigniew
    Jasinski, Michal
    REMOTE SENSING, 2022, 14 (13)