Genome-Wide Analysis and Expression Profiling of YUCCA Gene Family in Developmental and Environmental Stress Conditions in Tea Plant (Camellia sinensis)

被引:0
|
作者
Zhang, Liping [1 ]
Jin, Shan [2 ]
Bai, Peixian [1 ]
Ge, Shibei [1 ]
Yan, Peng [1 ]
Li, Zhengzhen [1 ]
Zhang, Lan [1 ]
Han, Wenyan [1 ]
Zeng, Jianming [1 ]
Li, Xin [1 ]
机构
[1] Chinese Acad Agr Sci, Tea Res Inst, Key Lab Tea Qual & Safety Control, Minist Agr & Rural Affairs, Hangzhou 310008, Peoples R China
[2] Fujian Agr & Forestry Univ, Key Lab Tea Sci Univ Fujian Prov, Coll Hort, Fuzhou 350002, Peoples R China
来源
FORESTS | 2023年 / 14卷 / 11期
关键词
Camellia sinensis; environmental stress; expression profile; gene family; growth and development; YUCCA (YUC); FLAVIN MONOOXYGENASE GENE; AUXIN BIOSYNTHESIS; TRANSCRIPTOMIC ANALYSIS; IDENTIFICATION; RESISTANCE; MECHANISMS;
D O I
10.3390/f14112185
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The tea plant is a perennial leaf-used economical crop and cultivated all over the world. Indole-3-acetic acid (IAA) plays key roles in plant development and environmental stress. YUCCA (YUC) flavin monooxygenases are the rate-limiting enzymes of the TAA/YUC pathway, which is the most important IAA biosynthetic pathway in plants. The YUC gene family in tea plants has not been systematically studied so far. A total of 17 CsYUC members were identified from a tea plant genome database and phylogenetically classified into three subfamilies. Phylogenetic analysis showed that the CsYUC gene family is evolutionarily conserved. The physical and chemical properties, gene structures, and conserved domains were analyzed. The expression profiles of CsYUCs were analyzed on the basis of open available RNA-seq data, as well as by RNA-seq and qRT-PCR assays. Combined with previous studies, it can be concluded that YUC10 may play key roles in seed development. The results also showed that CsYUC2.1 may play important roles in the coordinated regulation of the growth of leaf buds and flower buds induced by pruning. Low temperature markedly induced the expression of CsYUC2.2, -11.8, and -11.9. Furthermore, CsYUC genes that might play key roles in the specific development stages and involve enhancing the resistance to drought and NaCl stress were screened, respectively. This study could provide a research basis for deeply studying the gene functions of the CsYUC family in the tea plant.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Genome-Wide Identification, Characterization, and Expression Profiling of the Glutaredoxin Gene Family in Tea Plant (Camellia sinensis)
    Jiang, Dong
    Yang, Wenhai
    Pi, Jianhui
    Yang, Guoqun
    Luo, Yong
    Du, Shenxiu
    Li, Ning
    Huang, Li-Jun
    FORESTS, 2023, 14 (08):
  • [2] Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis)
    Yiqing Wang
    Tao Wang
    Siyu Qi
    Jiamin Zhao
    Jiumei Kong
    Zhihui Xue
    Weijiang Sun
    Wen Zeng
    BMC Genomics, 25
  • [3] Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis)
    Wang, Yiqing
    Wang, Tao
    Qi, Siyu
    Zhao, Jiamin
    Kong, Jiumei
    Xue, Zhihui
    Sun, Weijiang
    Zeng, Wen
    BMC GENOMICS, 2024, 25 (01)
  • [4] Genome-Wide Analysis of the TCP Gene Family and Their Expression Pattern Analysis in Tea Plant (Camellia sinensis)
    Shang, Xiaowen
    Han, Zhaolan
    Zhang, Dayan
    Wang, Ya
    Qin, Hao
    Zou, Zhongwei
    Zhou, Lin
    Zhu, Xujun
    Fang, Wanping
    Ma, Yuanchun
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [5] Genome-Wide Identification and Expression Analysis of the NRAMP Family Genes in Tea Plant (Camellia sinensis)
    Li, Jinqiu
    Duan, Yu
    Han, Zhaolan
    Shang, Xiaowen
    Zhang, Kexin
    Zou, Zhongwei
    Ma, Yuanchun
    Li, Fang
    Fang, Wanping
    Zhu, Xujun
    PLANTS-BASEL, 2021, 10 (06):
  • [6] Genome-wide identification and expression analysis of the Dof gene family under drought stress in tea (Camellia sinensis)
    Yu, Qian
    Li, Chen
    Zhang, Jiucheng
    Tian, Yueyue
    Wang, Hanyue
    Zhang, Yue
    Zhang, Zhengqun
    Xiang, Qinzeng
    Han, Xiaoyang
    Zhang, Lixia
    PEERJ, 2020, 8
  • [7] Genome-wide identification and expression pattern profiling of the ATP-binding cassette gene family in tea plant (Camellia sinensis)
    Shen, Chuan
    Li, Xia
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 202
  • [8] Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)
    Yong-Xin Wang
    Zhi-Wei Liu
    Zhi-Jun Wu
    Hui Li
    Wen-Li Wang
    Xin Cui
    Jing Zhuang
    Scientific Reports, 8
  • [9] Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)
    Wang, Yong-Xin
    Liu, Zhi-Wei
    Wu, Zhi-Jun
    Li, Hui
    Wang, Wen-Li
    Cui, Xin
    Zhuang, Jing
    SCIENTIFIC REPORTS, 2018, 8
  • [10] Genome-Wide Identification, Classification and Expression Analysis of the HSP Gene Superfamily in Tea Plant (Camellia sinensis)
    Chen, Jiangfei
    Gao, Tong
    Wan, Siqing
    Zhang, Yongheng
    Yang, Jiankun
    Yu, Youben
    Wang, Weidong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (09)