Deep Learning for Epidemiologists: An Introduction to Neural Networks

被引:12
作者
Serghiou, Stylianos [1 ,2 ]
Rough, Kathryn [3 ]
机构
[1] Prolaio Inc, 6929 N Hayden Rd,Suite C4-441, Scottsdale, AZ 85250 USA
[2] Stanford Univ, Meta Res Innovat Ctr Stanford, Sch Med, Stanford, CA USA
[3] IQVIA Germany, Global Epidemiol & Outcomes Res, Frankfurt, Hessen, Germany
关键词
artificial intelligence; deep learning; epidemiologic methods; machine learning; modeling; neural networks; prediction; RISK PREDICTION; HEALTH; CHALLENGES; MORTALITY; MEDICINE; CLASSIFICATION; MODELS; FUTURE;
D O I
10.1093/aje/kwad107
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Deep learning methods are increasingly being applied to problems in medicine and health care. However, few epidemiologists have received formal training in these methods. To bridge this gap, this article introduces the fundamentals of deep learning from an epidemiologic perspective. Specifically, this article reviews core concepts in machine learning (e.g., overfitting, regularization, and hyperparameters); explains several fundamental deep learning architectures (convolutional neural networks, recurrent neural networks); and summarizes training, evaluation, and deployment of models. Conceptual understanding of supervised learning algorithms is the focus of the article; instructions on the training of deep learning models and applications of deep learning to causal learning are out of this article's scope. We aim to provide an accessible first step towards enabling the reader to read and assess research on the medical applications of deep learning and to familiarize readers with deep learning terminology and concepts to facilitate communication with computer scientists and machine learning engineers.
引用
收藏
页码:1904 / 1916
页数:13
相关论文
共 50 条
  • [21] Representational Distance Learning for Deep Neural Networks
    McClure, Patrick
    Kriegeskorte, Nikolaus
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10
  • [22] Evolving Deep Neural Networks for Continuous Learning
    Atamanczuk, Bruna
    Karadas, Kurt Arve Skipenes
    Agrawal, Bikash
    Chakravorty, Antorweep
    FRONTIERS OF ARTIFICIAL INTELLIGENCE, ETHICS, AND MULTIDISCIPLINARY APPLICATIONS, FAIEMA 2023, 2024, : 3 - 16
  • [23] PHYLOGENETIC REPLAY LEARNING IN DEEP NEURAL NETWORKS
    Glafkides, Jean-Patrice
    Sher, Gene, I
    Akdag, Herman
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2022, 8 (03): : 218 - 231
  • [24] On the overfly algorithm in deep learning of neural networks
    Tsygvintsev, Alexei
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 : 348 - 358
  • [25] Deep Learning with Dense Random Neural Networks
    Gelenbe, Erol
    Yin, Yonghua
    MAN-MACHINE INTERACTIONS 5, ICMMI 2017, 2018, 659 : 3 - 18
  • [26] Can Deep Learning Only Be Neural Networks?
    Zhou, Zhi-Hua
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 6 - 6
  • [27] Review of applications of deep learning in veterinary diagnostics and animal health
    Xiao, Sam
    Dhand, Navneet K.
    Wang, Zhiyong
    Hu, Kun
    Thomson, Peter C.
    House, John K.
    Khatkar, Mehar S.
    FRONTIERS IN VETERINARY SCIENCE, 2025, 12
  • [28] Deep supervised learning with mixture of neural networks
    Hu, Yaxian
    Luo, Senlin
    Han, Longfei
    Pan, Limin
    Zhang, Tiemei
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 102
  • [29] A Review on Deep Neural Networks for ICD Coding
    Teng, Fei
    Liu, Yiming
    Li, Tianrui
    Zhang, Yi
    Li, Shuangqing
    Zhao, Yue
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4357 - 4375
  • [30] Deep Learning Neural Networks Optimization using Hardware Cost Penalty
    Doshi, Rohan
    Hung, Kwok-Wai
    Liang, Luhong
    Chiu, King-Hung
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 1954 - 1957