A movie recommendation method based on knowledge graph and time series

被引:0
|
作者
Zhang, Yiwen [1 ]
Zhang, Li [2 ]
Dong, Yunchun [3 ]
Chu, Jun [1 ]
Wang, Xing
Ying, Zuobin [4 ]
机构
[1] An Hui Xin Hua Univ, Fac Big Data & Artificial Intelligence, Hefei, Anhui, Peoples R China
[2] Anhui Jianzhu Univ, Hefei, Anhui, Peoples R China
[3] Hu Nan Zhong Yi Yao Univ, Changsha, Hunan, Peoples R China
[4] City Univ Macau, Fac Data Sci, Taipa, Macao, Peoples R China
关键词
Knowledge graph; rating prediction; collaborative filtering;
D O I
10.3233/JIFS-230795
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional collaborative filtering algorithms use user history rating information to predict movie ratings Other information, such as plot and director, which could provide potential connections are not fully mined. To address this issue, a collaborative filtering recommendation algorithm named a movie recommendation method based on knowledge graph and time series is proposed, in which the knowledge graph and time series features are effectively integrated. Firstly, the knowledge graph gains a deep relationship between users and movies. Secondly, the time series could extract user features and then calculates user similarity. Finally, collaborative filtering of ratings can calculate the user similarity and predicts ratings more precisely by utilizing the first two phases' outcomes. The experiment results show that the A Movie Recommendation Method Fusing Knowledge Graph and Time Series can reduce the MAE and RMSE of user-based collaborative filtering and Item-based collaborative filtering by 0.06,0.1 and 0.07,0.09 respectively, and also enhance the interpretability of the model.
引用
收藏
页码:4715 / 4724
页数:10
相关论文
共 50 条
  • [31] Recommendation method for fusion of knowledge graph convolutional network
    Xiaolin Jiang
    Yu Fu
    Changchun Dong
    EURASIP Journal on Advances in Signal Processing, 2022
  • [32] Knowledge Graph Enhanced Multi-Task Learning between Reviews and Ratings for Movie Recommendation
    Liu, Yun
    Miyazaki, Jun
    Chang, Qiong
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1882 - 1889
  • [33] Temporal Knowledge Graph Completion Based on Time Series Gaussian Embedding
    Xu, Chenjin
    Nayyeri, Mojtaba
    Alkhoury, Fouad
    Yazdi, Hamed
    Lehmann, Jens
    SEMANTIC WEB - ISWC 2020, PT I, 2020, 12506 : 654 - 671
  • [34] A Knowledge Graph Embedding Based Service Recommendation Method for Service-Based System Development
    Xie, Fang
    Zhang, Yiming
    Przystupa, Krzysztof
    Kochan, Orest
    ELECTRONICS, 2023, 12 (13)
  • [35] Movie Recommendation System Based on Movie Swarm
    Halder, Sajal
    Sarkar, A. M. Jehad
    Lee, Young-Koo
    SECOND INTERNATIONAL CONFERENCE ON CLOUD AND GREEN COMPUTING / SECOND INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING AND ITS APPLICATIONS (CGC/SCA 2012), 2012, : 804 - 809
  • [36] Iterative heterogeneous graph learning for knowledge graph-based recommendation
    Liu, Tieyuan
    Shen, Hongjie
    Liang, Chang
    Long, Li
    Li, Jingjing
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] Iterative heterogeneous graph learning for knowledge graph-based recommendation
    Tieyuan Liu
    Hongjie Shen
    Liang Chang
    Long Li
    Jingjing Li
    Scientific Reports, 13
  • [38] A novel Knowledge Graph recommendation algorithm based on Graph Convolutional Network
    Guo, Hui
    Yang, Chengyong
    Zhou, Liqing
    Wei, Shiwei
    CONNECTION SCIENCE, 2024, 36 (01)
  • [39] A graph comparison learning recommendation algorithm based on knowledge graph enhancement
    Cai, Xiaodong
    Xue, Yun
    Zhang, Yanyan
    Ye, Qing
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1020 - 1024
  • [40] An Improved Human-Computer Interaction Content Recommendation Method Based on Knowledge Graph
    He, Zhu
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION, 2024, 40 (17)