A movie recommendation method based on knowledge graph and time series

被引:0
|
作者
Zhang, Yiwen [1 ]
Zhang, Li [2 ]
Dong, Yunchun [3 ]
Chu, Jun [1 ]
Wang, Xing
Ying, Zuobin [4 ]
机构
[1] An Hui Xin Hua Univ, Fac Big Data & Artificial Intelligence, Hefei, Anhui, Peoples R China
[2] Anhui Jianzhu Univ, Hefei, Anhui, Peoples R China
[3] Hu Nan Zhong Yi Yao Univ, Changsha, Hunan, Peoples R China
[4] City Univ Macau, Fac Data Sci, Taipa, Macao, Peoples R China
关键词
Knowledge graph; rating prediction; collaborative filtering;
D O I
10.3233/JIFS-230795
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional collaborative filtering algorithms use user history rating information to predict movie ratings Other information, such as plot and director, which could provide potential connections are not fully mined. To address this issue, a collaborative filtering recommendation algorithm named a movie recommendation method based on knowledge graph and time series is proposed, in which the knowledge graph and time series features are effectively integrated. Firstly, the knowledge graph gains a deep relationship between users and movies. Secondly, the time series could extract user features and then calculates user similarity. Finally, collaborative filtering of ratings can calculate the user similarity and predicts ratings more precisely by utilizing the first two phases' outcomes. The experiment results show that the A Movie Recommendation Method Fusing Knowledge Graph and Time Series can reduce the MAE and RMSE of user-based collaborative filtering and Item-based collaborative filtering by 0.06,0.1 and 0.07,0.09 respectively, and also enhance the interpretability of the model.
引用
收藏
页码:4715 / 4724
页数:10
相关论文
共 50 条
  • [21] A novel knowledge graph embedding based API recommendation method for Mashup development
    Xin Wang
    Xiao Liu
    Jin Liu
    Xiaomei Chen
    Hao Wu
    World Wide Web, 2021, 24 : 869 - 894
  • [22] The Graph Attention Recommendation Method for Enhancing User Features Based on Knowledge Graphs
    Wang, Hui
    Li, Qin
    Luo, Huilan
    Tang, Yanfei
    MATHEMATICS, 2025, 13 (03)
  • [23] An Effective Collaborative Filtering Based Method for Movie Recommendation
    Palak, Rafal
    Ngoc Thanh Nguyen
    MULTIMEDIA AND NETWORK INFORMATION SYSTEMS, MISSI 2016, 2017, 506 : 149 - 159
  • [24] Recommendation method for fusion of knowledge graph convolutional network
    Xiaolin Jiang
    Yu Fu
    Changchun Dong
    EURASIP Journal on Advances in Signal Processing, 2022
  • [25] A novel knowledge graph embedding based API recommendation method for Mashup development
    Wang, Xin
    Liu, Xiao
    Liu, Jin
    Chen, Xiaomei
    Wu, Hao
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (03): : 869 - 894
  • [26] Recommendation method for fusion of knowledge graph convolutional network
    Jiang, Xiaolin
    Fu, Yu
    Dong, Changchun
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [27] Knowledge Graph Enhanced Multi-Task Learning between Reviews and Ratings for Movie Recommendation
    Liu, Yun
    Miyazaki, Jun
    Chang, Qiong
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1882 - 1889
  • [28] A Personalized English Learning Material Recommendation System Based on Knowledge Graph
    Huang, Yiqin
    Zhu, Jiang
    INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2021, 16 (11) : 160 - 173
  • [29] A Knowledge Graph Embedding Based Service Recommendation Method for Service-Based System Development
    Xie, Fang
    Zhang, Yiming
    Przystupa, Krzysztof
    Kochan, Orest
    ELECTRONICS, 2023, 12 (13)
  • [30] A novel Knowledge Graph recommendation algorithm based on Graph Convolutional Network
    Guo, Hui
    Yang, Chengyong
    Zhou, Liqing
    Wei, Shiwei
    CONNECTION SCIENCE, 2024, 36 (01)