Sampled-data control for cyber physical systems via identifying false data injection attacks

被引:3
作者
Yu, Peng [1 ,2 ]
Wei, Jingliang [1 ,2 ]
Jia, Ruizhe [1 ,2 ]
Wang, Jimin [1 ,2 ]
Guo, Jin [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing, Peoples R China
[2] Minist Educ, Key Lab Knowledge Automat Ind Proc, Beijing, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
cyber physical systems; false data injection attacks; parameter identification; sampled-data control; SLIDING MODE CONTROL; INPUT; PERFORMANCE;
D O I
10.1002/acs.3674
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss the security control problem of cyber physical systems based on identifying false data injection attacks. First, the unknown adversary randomly attacks the measurement output, a mechanism is set in the sensor to update the measurement output to the constant, called the one-valued quantized mechanism. Then, the Bienayme-Chebyshev inequality and the one-valued quantized mechanism are utilized to design an identification algorithm, the estimated value of the false data injection attack and the minimum identification time can be obtained. Furthermore, based on the LMI theory, sampled-data control gains with and without attacks are obtained to ensure the system mean-square exponential stable, respectively. And the corresponding maximum sampling period of the controller is obtained. Finally, numerical examples verify the correctness and effectiveness of the theory.
引用
收藏
页码:3094 / 3110
页数:17
相关论文
共 41 条
[1]  
Alsmeyer G., 2011, INT ENCY STAT SCI, DOI [10.1007/978-3-642-04898-2, DOI 10.1007/978-3-642-04898-2]
[2]   Data-Driven Resilient Automatic Generation Control Against False Data Injection Attacks [J].
Chen, Chunyu ;
Chen, Yang ;
Zhao, Junbo ;
Zhang, Kaifeng ;
Ni, Ming ;
Ren, Bixing .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (12) :8092-8101
[3]  
Chen HY, 2023, IEEE T IND INFORM, V19, P10034, DOI [10.1109/TII.2022.3232768, 10.1109/TAFFC.2023.3265653]
[4]   Guaranteed performance impulsive tracking control of multi-agents systems under discrete-time deception attacks [J].
Chen, Wu-Hua ;
Wan, Qian ;
Lu, Xiaomei .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
[5]   Static Output Feedback Quantized Control for Fuzzy Markovian Switching Singularly Perturbed Systems With Deception Attacks [J].
Cheng, Jun ;
Wang, Yueying ;
Park, Ju H. ;
Cao, Jinde ;
Shi, Kaibo .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (04) :1036-1047
[6]   NN-based decentralized adaptive event-triggered control for nonlinear interconnected systems under intermittent DoS and injection attacks [J].
Cui, Yahui ;
Sun, Haibin ;
Hou, Linlin .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (09) :2249-2268
[7]   Detecting stealthy false data injection attacks in the smart grid using ensemble-based machine learning [J].
Das, Mohammad Ashrafuzzaman ;
Das, Saikat ;
Chakhchoukh, Yacine ;
Shiva, Sajjan ;
Sheldon, Frederick T. .
COMPUTERS & SECURITY, 2020, 97 (97)
[8]   Input-to-State Stabilizing Control Under Denial-of-Service [J].
De Persis, Claudio ;
Tesi, Pietro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (11) :2930-2944
[9]   Security Control for Discrete-Time Stochastic Nonlinear Systems Subject to Deception Attacks [J].
Ding, Derui ;
Wang, Zidong ;
Han, Qing-Long ;
Wei, Guoliang .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (05) :779-789
[10]   Output Control of Linear Time-invariant Systems Under Input and Output Disturbances [J].
Furtat, Igor ;
Gushchin, Pavel ;
Nekhoroshikh, Artem ;
Peregudin, Alexey .
IFAC PAPERSONLINE, 2020, 53 (02) :4534-4539