Minimal linear codes from defining sets over Fp plus uFp

被引:1
|
作者
Gao, Jian [1 ]
Zhang, Yaozong [1 ]
Meng, Xiangrui [2 ,3 ]
Fu, Fang-Wei [2 ,3 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Anguilla
[3] Nankai Univ, Tianjin Key Lab Network & Data Secur Technol, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear codes; Exponential sums; Lee-weight distributions; Complete weight enumerator; Minimal linear codes; COMPLETE WEIGHT ENUMERATORS; FINITE-FIELDS; CYCLIC CODES; 3-WEIGHT; 2-WEIGHT; CONSTRUCTION; FAMILIES;
D O I
10.1016/j.disc.2023.113584
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Minimal codes are a special type of linear codes, which have nice applications in secret sharing and secure two-party computation. How to construct new infinite family of minimal codes has been a hot topic in coding theory and cryptography. In this paper, by employing exponential sums, we study the Lee-weight distributions of several classes of linear codes from defining sets over the finite chain ring Fp + uFp and determine exactly the complete weight enumerator of their Gray images under the Gray map. Furthermore, we prove that the Gray images of these linear codes are new infinite families of minimal five-weight linear codes with wmin wmax < p-1 p . & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Minimal linear codes from weakly regular bent functions
    Xu, Guangkui
    Qu, Longjiang
    Luo, Gaojun
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (02): : 415 - 431
  • [22] A Construction of Minimal Linear Codes From Partial Difference Sets
    Tao, Ran
    Feng, Tao
    Li, Weicong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (06) : 3724 - 3734
  • [23] u-Constacyclic codes over Fp + uFp and their applications of constructing new non-binary quantum codes
    Gao, Jian
    Wang, Yongkang
    QUANTUM INFORMATION PROCESSING, 2018, 17 (01)
  • [24] Non-Binary Quantum Codes from Cyclic Codes over Fp x (Fp + vFp)
    Caliskan, Fatma
    Yildirim, Tulay
    Aksoy, Refia
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (02)
  • [25] CYCLIC AND NEGACYCLIC CODES OF LENGTH 2p~s OVER Fp~m + uFp~m
    刘修生
    许小芳
    Acta Mathematica Scientia, 2014, 34 (03) : 829 - 839
  • [26] Projective Linear Codes From Some Almost Difference Sets
    Heng, Ziling
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (02) : 978 - 994
  • [27] Minimal Binary Linear Codes From Vectorial Boolean Functions
    Li, Yanjun
    Peng, Jie
    Kan, Haibin
    Zheng, Lijing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (05) : 2955 - 2968
  • [28] Minimal Linear Codes From Characteristic Functions
    Mesnager, Sihem
    Qi, Yanfeng
    Ru, Hongming
    Tang, Chunming
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5404 - 5413
  • [29] Full Characterization of Minimal Linear Codes as Cutting Blocking Sets
    Tang, Chunming
    Qiu, Yan
    Liao, Qunying
    Zhou, Zhengchun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (06) : 3690 - 3700
  • [30] A class of constacyclic codes over Fp plus vFp and its Gray image
    Zhu, Shixin
    Wang, Liqi
    DISCRETE MATHEMATICS, 2011, 311 (23-24) : 2677 - 2682